In July 2022 the National Aeronautics and Space Administration (NASA) announced the first batch of colour photos taken by the James Webb Space Telescope more than six months after its launch. In August the Webb telescope captured the first clear evidence of carbon dioxide in the atmosphere of an extrasolar planet (exoplanet). In September, the Webb telescope released its first infrared image of Mars, acquiring atmospheric data for the entire planet.
After many delays, the large lunar exploration launcher Space Launch System carrying the Orion spacecraft was launched from the Kennedy Space Center in Florida in the early morning of 16 November 2022, thus beginning Artemis 1’s unmanned flight around the Moon. After completing a 25.5-day unmanned mission around our satellite, the Orion spacecraft landed on the Pacific Ocean near Baja California, Mexico, on 11 December, thus ending the first mission of the Neo Artemis lunar landing programme – a high-risk return for an Earth test related to human travel around the moon that will take place in the coming years. This is an important step for the United States regarding the return to the moon after the Apollo 17 landing on the moon 51 years ago.
The US Dark Energy Spectroscopic Instrument (DESI) project has broken the record for all previous surveys of galaxies in 3D vision, creating the largest and most detailed map of the universe ever compiled. US astrophysicists have set the most precise constraints to date on the composition and evolution of the universe. NASA has also achieved the first “holographic teleportation” of humans from Earth to space.
In terms of commercial space tourism, the first “crew” purely composed of private individuals arrived at the International Space Station on 9 April 2022. In May a research team from the University of Florida successfully cultivated plants on lunar soil for the first time.
A Washington State University study found that mixing a small amount of simulated crushed Martian rock with a titanium alloy in the 3D printing process made the material stronger and higher-performing, and could be used to make instruments and carrier rocket components for more detailed exploration of the red planet. The breakthrough could make future space travel cheaper and more practical.
NASA has stated that the Exoplanet Archive has accepted 65 new exoplanets and their total number has exceeded the five thousand threshold. Furthermore, NASA’s Jet Propulsion Laboratory is developing a new project that will enable robots having the size of smartphones to “navigate” the cosmic oceans in search of signs of life.
Also on the Russian side – at least before the outbreak of the well-known and supposedly ongoing crisis – the country will complete twenty-two spacecraft launch missions, including two manned Soyuz and two Progress cargo missions to the International Space Station. The originally planned mission to launch the Luna 25 probe in September was postponed to 2023 because the performance of the Doppler velocity and distance sensors used by the probe did not meet requirements. It is thought, however, that the reason lies in the lack of capital planned and now being used on the war front.
Russia’s missile and aircraft industry – of great tradition and authority – is the sector most severely feared by the United States and the West. Due to sanctions, both Boeing and Airbus announced – even before the Ukrainian crisis – that they would no longer sell aircraft, spare parts and related services to Russia. This severely jeopardises the survival and development of the Russian aviation industry. To this end, focusing on self-sufficiency, Russia urgently formulated plans to produce Sukhoi Super 100, Tu-214 and MS-21 passenger aircraft and rebuilt the aviation industry’s production system. The first batch of MC-21 airliners with domestic components is expected to be delivered in 2024, except for unforeseen circumstances.
In July 2022 the Obyedinyonnaya Aviastroitelnaya Korporatsiya (United Aeronautical Corporation) declared that Russia would fulfil all its obligations vis-à-vis its partners regarding the International Space Station, but decided to withdraw from the space station after 2024. Later an orbital station will begin to form under the aforementioned OAK – a grouping of Russian aerospace companies created in 2006 at the Russian government’s initiative. In October Russia used the Soyuz-2.1b carrier rocket to successfully launch the first satellite of the Sphere/Scythian-D project. A demonstration satellite of the future Scythian system technology for broadband Internet access, part of the Sphere satellite constellation. The project of the Sphere group of satellites plans to launch 600 satellites to provide Internet services on the ground, similar to the US Space Exploration Technology Corporation‘s Starlink system.
On the British side, too, there is no shortage of initiatives such as mapping the skies of the Northern hemisphere to solve the mystery of the formation of the first quasars. In 2022, British scientists focused on the remotest depths of the universe making a number of important discoveries.
Astronomers from Durham University, in collaboration with an international team of scientists, used the pan-European Low Frequency Array (LOFAR) radio telescope to map more than a quarter of the Northern sky, discovering some 4.4 million objects billions of light years away, including one hundred thousand previously unknown celestial bodies.
Scientists from the University of Sussex have solved a black hole paradox previously proposed by Stephen Hawking, proving that black holes really have “quantum hair” properties. In quantum theory, the state of matter that collapses and forms the black hole continues to influence the external state of the black hole itself, albeit in a way that is compatible with current experimental limits. This is the meaning of “quantum hair”.
The mystery of the formation of the first quasars that has bedevilled astronomers for twenty years has finally been solved: scientists from the University of Portsmouth have discovered that the first quasars formed naturally in the violent turbulent conditions of the rare gas layer in the early universe. The research also overturns years of thinking about the origin of the universe’s first immense black hole discovered so far.
The search for signs of life on exoplanets, however, has always been one of the goals of space exploration: the University of Exeter has used the Webb telescope to take images of an exoplanet directly from space for the first time, which will help to better study the chemistry of these planets. Scientists from the Natural History Museum in the UK have also found extraterrestrial water in a meteorite that fell in the UK.
Scientists from Durham University used supercomputers to simulate the possible impact of a collision between the Earth and a protoplanet, concluding that the moon could have formed in a matter of hours rather than thousands of years.
In 2022 the German federal government began formulating a new space strategy: one of the key points is Earth observation in the context of climate change, including the prevention and removal of space debris. The European Space Agency (ESA) announced the European Space Programme for the next three years; it will raise 16.9 billion euros, and will give priority to supporting an Internet satellite constellation in low orbit.
In aerospace research Germany successfully tested the upper stage of the European Ariane 6 launch vehicle for the first time. The German Offshore Spaceport Alliance’s plans to build a space launch platform continue to move forward. The first hyperspectral Environmental Mapping and Analysis Program (EnMAP) satellite developed and built in Germany was launched successfully. In terms of specific technologies, Germany has developed a fully integrated W3C mobile satellite control system on a standard laptop, which can control satellites without relying on any infrastructure other than antennas. It has developed a new generation of laser reflectors for satellites, which can operate without electricity. It has also developed a high-powered single-mode Vertical Cavity Surface Emitting Laser (VSEL) for use in space altitude gyroscopes.
Again in 2022 Germany – together with partners on the International Space Station – performed a simulation of capturing a small satellite with another satellite. Germany successfully tested the component structure, measurement methods and evaluation algorithms of hypersonic flight technology through a flight test. The third stage of the rocket with the payload reached a flight speed of about 9,000 kilometres per hour, corresponding to a Mach number above 7, for about 120 seconds. German and Spanish missile manufacturers are spearheading the development of a new hypersonic defence interceptor that in the future will be integrated into a high-performing system capable of early warning, tracking and interception of air threats, including ballistic missiles and hypersonic vehicles.
In aeronautics research, the German Aerospace Centre uses interdisciplinary methods to continuously improve the level of automation, digitisation and virtualisation. For example, through the Remote Tower Center project, the feasibility of a control centre providing air traffic services for multiple airports has been verified. A series of research and development activities around pure electricity, hydrogen fuel cells and Sustainable Aviation Fuel (SAF) has been promoted. For the first time, the entire digital development chain of throttle valves, from design to production and testing, has been computer-simulated.
With specific referenced to SAF, it must be said that aviation currently accounts for around 2-3% of global CO2 emissions. Since air travels are expected to double over the next fifteen years, these figures will grow quickly. The International Air Transport Association (IATA) has already taken steps in the right direction by committing to achieving zero emission growth from 2020 onwards and zero net carbon emissions from global aviation operations by the end of 2050.
While many solutions such as the aforementioned electrified aviation are still in the early stages of development, the industry needs solutions to reduce direct carbon emissions resulting from flights. In the meantime, Finland’s Neste MY Sustainable Aviation Fue is leading the way with a current solution that is commercially available and in use worldwide. SAF is a direct and cleaner substitute for fossil jet fuel and reduces greenhouse gas (GHG) emissions by up to 80% compared to fossil jet fuel.
Neste currently produces 100,000 tonnes of SAF and production will increase up to 1.5 million tonnes (about 1.875 billion litres) per year by the end of 2023. At the same time, Neste is forging bold new partnerships to increase the global availability of SAF.