The Nuclear State without Nuclear: Nuclear Energy Tragedy pertaining Indian Regional Development

India’s national energy policy is heavily dependent on fossil fuel consumption to attain its energy demands; around 70 percent of the energy requirements are overwhelmingly met by coal, where the share of nuclear power is below 3 percent. Coal is essential for baseload in electrification, and the production of steel and significant industries thrive on coal consumption alone. In the year 2020-21, India produced 716 million tons of coal, nearly two times higher compared to 2011-12, when India produced 431 million tons to supply the ever-growing demand for power. Despite such enormous production, India is one of the largest coal importers. Not alone, the coal simultaneously India dependence on oil imports, according to reports, stood at 76 percent, which is predicted to surge up to severe levels by 2040.    

Despite the heavy reliance on fossil fuels and the fact that India maintained its carbon emissions level below (” emissions per capita, total or kWh produced”) the Paris agreement 2015 levels, meticulous analysis reveals that the carbon emission level of India has risen by 200 percent since 1990. Climate change affects the agrarian sector, which makes up about 42 percent of India’s workforce, pushing it under the blade of job cuts if the water scarcity gets severe; it also threatens the inhabitants of hilly areas whose employment is dependent on the mesmeric mountains tourism. The scope of development of any region in this modern world significantly relies on the consumption of power to run factories, lighten up houses, and fast irrigation systems in farms for large quantities of production.   

India’s current electricity distribution has 371.054 GW GRIDs, divided into five regions Northern, Eastern, Western, North Eastern, and Southern; seventeen percent of this electric GRID is exercised by the agriculture sector, where the commercial agencies use 48 percent. With the emerging depletion of fossil fuels, nuclear power adoption, along with other clean energy power sources, is considered one of the priorities of the Indian government.

However, reports depicted that those policies’ effects are not present on the ground, where nuclear energy contributes merely three percent to the total energy production. The nuclear proportion in China’s energy production is four times greater than India’s; India must adapt to the nuclearization of India’s rural area, paving the way for future growth. The recent enclosure of twenty-five-year-old coal plants in India reflects a minor contribution concerning carbon emissions reduction. At the same time, the consequence brought India into the coal crisis in the northern region.

Rural backwardness constitutes the majority due to the low electricity consumption, whose reasons are ample, sometimes due to geographical limitations and atmospheric restrictions, especially in hilly areas. The electric GRID distribution and maintenance could be better, where the electricity surplus is concentrated in a few sectors based in metro cities. During the Covid Preventive lockdown, seventy percent of power consumption drop in rural India has been noticed; this development questions India’s energy policies which heavily relied upon fossil fuels for energy production. Four states, named Chhattisgarh, Jharkhand, Orissa, and Madhya Pradesh, comprise 550 million tons of coal, equivalent to 75-80 percent of coal consumption. The argument in favor of coal is due to its cost-effectiveness and availability.  

Another reason for low rural development is the GRID-electrification system, being the primary source of power supply in the rural household, reported monthly energy consumption of 39 kWh, half of India’s national energy consumption average, which is a significant obstacle to the adoption of modern technology for overall growth in rural areas. The reason is not alone political but mismanagement of electricity distribution. As the question of this paper addressed, Why Nuclear? Why not other sources of non-Fossil fuels energy?   

Mathematical Evidence  

For example, the number of atoms of Uranium 235 per kilogram is 2.564×1024 releasing the energy per gram is around 2.29×104 kWh. [Dr S.N Ghosal, Nuclear Physics].  Thermal plants produce the same energy after running for 229 hours at the capacity of 1 MW. When one kilogram of coal burns, it generates 8.926 kWh after exhausting the total mass of 2.56×103 kg. The above estimates demonstrate the advantage of using uranium for power generation. 

However, the nuclear economic constraint unrevealed the enormous cost comes alongside Nuclear Power Plant projects, especially the cost of 1000 megawatts generation is around 5500 dollars, whereas natural gas provides the same quantity of energy for under 1000 dollars; the construction durations refrain policymakers to entertain the nuclear reactor as a feasible power generation source where it takes around seven years to complete and 15-16 years to breakeven.

Nuclear dependency globally was now 10 percent, peaked at 17.7 in 1996, and this is the second obstacle for nuclear energy globally. However, India’s view, contrary to the other nations, being the largest reserve of Thorium, gives an upper hand to maximize energy production by establishing thorium reactors which are undergoing the three-stage plan. Besides thorium reactors, SMRs are in consideration, especially the recent development in the USA where private firm Nu Scale advanced to develop the Small Modular Nuclear Reactor with the capacity of generating 50 Megawatts, which is not par to the level of traditional reactors but corresponds to the resilience it could provide electrifying those lands where electric GRIDs yet not connected. The rural area primarily benefits from such development as such modules are self-sustainable, where the reliance will be on water recycling, limiting water misuse.

The case of Jadugoda was an infamous case where Uranium plant radiation contributed to severe health deterioration, highlighted by Kyoto university research. Radiation is one of the critical issues alongside nuclear waste, which hinders nuclear energy’s ability to obtain massive consent, especially in rural areas.

Other Renewable sources talking about Hydropower, India has 18 pressurized heavy water reactors in operation, with another four projects launched totaling 2.8 GW capacity. India 2019 took over Japan, becoming the fifth-largest hydropower producer generating 162.10 TWh from 50 TWH installed capacity. Close to 100 hydropower currents are used, contributing around twelve percent to the total power generation. The procedure of hydropower generation emphasizes water flow tremendously; without the fast running, the water plant will be defunct and fail to produce power. This forces the policymakers to ignore the natural effects on the regions of the water flow is adequate. 

Climate change models are clear about the cascading impacts of global warming trends on the glaciers of the Himalayas, the primary source of water in the region that sustains the drainage network within the mountain chain. The current hydro onslaught in the Himalayas deliberately ignores contentious externalities such as social displacement, ecological impacts, and environmental and technological risks. In the rural areas, if the regions do not have such a large flow of water, it will discourage the policy marker from implementing it even if one state possesses water, it will obstruct the construction of such projects because of shortage of water and possibly drainage hindering to fulfill the critical water needs, especially in the Punjab region.

 Wind energy mechanical power through wind turbines as of 28 February 2021, India installed wind power capacity was 38.789 GW, the world’s fourth largest installed wind power capacity. Like hydropower, nature requires to perform its task where the wind flow determines the total power production. If a region is not naturally gifted, then feasibility is under question.

The last alternative Fossil fuel, which is heavily praised by the young generation, is solar energy. The country currently has 44.3 GW installed capacity as of 31 August 2021, where solar energy has the potential to generate electricity for rural areas and simultaneously reduce Fossil fuels consumption. The New and Renewable Energy (MNRE) expected “the total investment for upgrading to 100 GW solar power capacity cost around $94 billion. The cost-efficiency factor is a plus point of solar energy. However, the pace still needs to catch up in the quest to replace conventional sources of energy.   

The fossil fuels burned by the factories in the urban areas are the primary power contributor supplying power to the rural areas. This system heavily depends on the GRIDs vulnerable to atmospheric shifts such as storms.  

Moreover, even a minor breakdown might defuse the electricity power supply GRIDs for days, if not weeks. To tackle these issues, Portable Nuclear plants could be set up to give the villagers access to electricity without interruption. The reduction of size assists the government official in planning the safety strategy more swiftly simultaneously; cost efficiency is another factor where a policymaker can cut factory expenses.

Figure 1 GRID-level system costs for dispatch able and renewable technologies Materials requirement for various electricity generation technologies (source: US Department of Energy)

Figure 1 deciphers the cost relationship enabling us to comprehend the long-term financial cost when the connection cost among other eco-friendly energy sources is too high compared to fossil fuels. Nuclear energy outperforms all existing energy sources considered eco-friendly in connection cost and balancing cost. This development also illustrates that the factories lean more towards fossil fuels because of the low cost. However, economically speaking, the employment of such industries could be more sustainable in the long term.

The Photovoltaic, Hydro, and onshore alternatives, well-established sources of energy production, are not that reliable, and variation in power generation discourages them from being considered a superior replacement. 

Solar is affordable but unreliable because intermittency issues require storing backup, and the production depends mainly upon the sun, like the wind, for turbine energy. In contrast, coal requires man labor to extract from the mines and ignite it to produce energy if we consider the process in abstraction. The case of nuclear is different nuclear energy do rely on 239 Uranium and 242 Plutonium, in some cases 232 Thorium to attain the level where power could be generated, and uranium, to be precise, is scared in quantity to solve the enormous issue Enrico Fermi already in the 1940s, stated that nuclear reactors operating with ‘fast’ neutron are capable to fission not only the rare isotope U-235 which indicates towards A fast-neutron reactor.

The Covid and Rural development     

During the lockdown, seventy percent of the power consumption drop in rural India has been noticed; this development questions India’s energy policies which heavily relied upon fossil fuels for energy production. The GRID-electrification, the primary source of power supply in the rural household, reported monthly energy consumption of 39 kWh half of India’s national energy consumption average, which is a significant obstacle to the adoption of modern technology for overall growth in rural areas. A significant downfall has been noticed in the employment sector, tabled whether it could replace fossil fuel, which constitutes a significant number in employing rural workers. 

Deloitte’s study of the European nuclear industry suggested that nuclear provides more jobs per TWh of electricity generated than any other clean energy source. According to the report, the nuclear industry sustains more than 1.1 million jobs in the European Union. Aggressive promotion of nuclear energy will impact all other fields, such as education, the health sector, and employment. Running a conventional reactor requires a team who can resolve the complex task; however, if the reactor is small and portable, the operation fixations reduce significantly. 

Providing adequate function training will become the source of employment while reducing fissile fuel dependency. At the same time, nuclear reactors require sophisticated hands to run the function, which could reduce the unemployment created by fossil fuel industries in response to a carbon tax or depletion of fuels, more precisely, a severe rise in fuel prices.    

The Limits    

Although the enormous potential for nuclear energy possesses few areas that are still vulnerable whose exploitation might invite catastrophic such as the illegal transfer of nuclear energy by non-state actors, one of the critical issues India is facing is news of uranium confiscations currently haunts the world that India security vulnerability enabled the private persons to have a hand over fissile materials, the other issue that should be considered is the maintenance of nuclear plants Chornobyl is an excellent example of what extend of potential a nuclear disaster possesses still in several regions in Ukraine radiation exist. [Barry W. Brook, “Why nuclear energy is sustainable and has to be part of the energy mix”].

India needs to accelerate the nuclear problem while strictly abiding by the security norms of the nuclear policy widely accepted as a nuclear safety benchmark. Meltdown, Hazardous nuclear waste and maintenance predominated the circle of nuclear crisis (except France and Sweden, as a significant proportion of electricity generation depends on nuclear plants); currently, SMR is echoing to minimize such externalities; however, the effectiveness of such small module reactors must be scrutinized under tests before it could be considered as a genuine alternative to traditional reactors.

Conclusion   

Nuclear energy is far superior to other fossil fuel energy alternatives. However, the low adaption is one of the critical issues that require tackling by incentivizing the research to develop several small scales portable nuclear reactor modules that stand on the international security parameters and simultaneously ensure a low probability of accidents. The employment prospect from nuclear reactors is enormous, and as the depletion of fossil fuel takes place could become the most employment service-providing sector.

 Two types of reactors are mainly highlighted first is a conventional nuclear reactor, and the second is portable nuclear reactors; government, in the long term, must concentrate on building small-scale reactors so cost efficiency will favor the rural people. Nuclear energy is a multi-sectoral project where the industries and the household will have greater access to electricity, but the complexity of reactor management advances specialization in education. Such problems are vital if India has any dream of total nuclearization.

Harjeet Singh
Harjeet Singh
Harjeet Singh is a student of the University of Delhi pursuing a bachelor's in political science honors, his heterodox approaches to international studies and research that has received considerable international acknowledgement.