Connect with us

Science & Technology

The Development of Artificial Intelligence in China: Development points and projects

Avatar photo

Published

on

Making machines mimic or even surpass human intellectual behaviour and thinking methods has always been a scientific field full of rich imagination and great challenges. The recent great advances in Artificial Intelligence technology represented by driverless cars and the AlphaGo game have led to enthusiasm and a great deal of funding for the AI field. Considering the development bases, existing problems and opportunities of Chinese AI, strategic thinking on the progress of this industry is continuously proposed for discussion and decision-making reference.

The Internet+ action guidance opinions issued by the State Council have clearly stated that AI is one of the key development areas for the creation of new industrial models. Four Departments, in addition to the National Development and Reform Commission and the Ministry of Science and Technology, have jointly issued implementation plans for Internet+.

The development plan has been promoted in three main aspects and nine minor items. Smart homes, smart wearable devices and smart robots will all become key development support projects. The implementation plan clarifies the development priorities and support projects specific to the Artificial Intelligence industry, thus showing that this field has been raised to a national strategic level.

Considering the great attention paid by the State, increased investment in scientific research and an injection of dividends for talents are expected to accelerate industrial transformation, as facial recognition, language recognition, intelligent robots and other application segments will continue to expand and further promote their marketing.

AI has reached the peak of China’s national strategy, and has shown the need to learn from the advanced Western countries’ research practices to discuss, launch and implement the national plan.

In recent years, the United States of America, the European Union and Japan have successively launched numerous programmes and huge investment, covering future information technology, as well as medicine and neuroscience.

Faced with fierce international competition, China is learning from the experience of the above stated and other countries across disciplines and sectors. The agenda includes the implementation of a project that not only involves AI, but is also inseparable from life sciences, particularly neuroscience. This is so that greater resources can be concentrated on solving the most pressing social needs, such as the development of diagnostic and therapeutic methods for the prevention and treatment of brain diseases, in particular neurodevelopmental diseases, mental illnesses, early diagnosis and intervention in neurodegenerative diseases. The main research focus is on the principle of brain functioning and frontier fields relating to the prevention and treatment of major brain diseases.

As already seen, the foundation of AI involves mathematics, physics, economics, neuroscience, psychology, philosophy, computer engineering, cybernetics, linguistics, biology, cognitive science, bionics and other disciplines and their intersections. The subject of AI has a very broad and extremely rich research content, including cognitive modelling; representation, reasoning and knowledge engineering; machine perception; machine thinking and learning; machine behaviour; etc.

Various AI researchers study such content from different angles. For example, from the ones based on brain function simulation; on the application field and application system; on the system structure and supporting environment; on the distributed artificial intelligence system; on machine theorem demonstration; on uncertainty reasoning, etc. Chinese scholars have made some important achievements in machine theorem proving, hierarchical knowledge representation and reasoning, automatic planning, iris and speech recognition, extension, evolutionary optimisation, data mining (the process of extracting and discovering patterns in large datasets involving methods ranging from machine learning intersection to statistics and database systems), etc. In AI basic research, Chinese experts have great international influence. In general terms, however, the results are not sufficient, the scope is not broad and the overall influence needs to be further improved.

AI basic research is the cornerstone of sustainable development of the related technology, and only by laying sound foundations in it can we provide the driving force for the vigorous development and comprehensive upgrading in the field of its applications. AI basic research needs to be comprehensively strengthened. Innovative multidisciplinarity needs to be encouraged, and importance needs to be attached to it on a forward-looking basis.

The demand for software is an inexhaustible source of technological innovation. AI is considered the fourth industrial revolution. Its theme is three intelligences: factory, production and logistics. The main content of the Made in China 2025 plan is to establish a production line, adopt a management and operation model and start with the following five aspects: design, technology, production, service guarantee and management. The key role of AI technology in smart manufacturing can only be seen from the progress of these aspects.  

The implementation of AI technology can be extended to all investment classes and subjects. For example, the intelligent development of technology applied to industrial and mining enterprises includes five points:

1) using intelligent machines (including smart robots) to replace work in hazardous, toxic, radioactive and other harmful environments and in heavy, arduous, repetitive, monotonous, high-altitude, dusty and other difficult conditions, to reduce the intensity of physical and mental work and protect workers (the health issue);

2) using AI technology to design factories and mines, production workshops, sections and equipment, as well as quickly optimise the design scheme and achieve the design intelligence of production;

3) implementing AI technology to fully achieve the production process;

4) developing an intelligent consultation and decision-making system: providing scientific advice, decision-making and management of the production process, and moving towards intelligent production and staff management;

5) researching and developing various expert systems for production planning: monitoring and control of the production process; intelligent fault diagnosis of production systems and equipment; and improvement of labour productivity and product quality.

AI developers combine the characteristics of various enterprises and promote Made in China 2025 and Internet + plans as an opportunity. They seize the historic opportunity of the second machine revolution, achieve AI and vigorously develop these fields. Smart technology and industry inject ideas into the “new” normal of the economy. There is a need to improve the research, development and innovation capabilities of AI technology in the industrial field; to develop high-level products and avoid low-result repetition and haphazard competition. We need to deepen the promotion and implementation of these technologies and make the smart industry bigger and stronger.

As a high-tech segment, AI needs to innovate policy mechanisms, management systems, market mechanisms, and performance transformation to provide an excellent environment for its and its industries’ development and to accompany the healthy progress of initiatives.

Policies need to be introduced to encourage the implementation of AI in the promotion and market development of technology and to broaden the support of national policies, so that new funds and applications will be obtained and new technologies from the laboratory to the field be accelerated as soon as possible. (10. continued).

Advisory Board Co-chair Honoris Causa Professor Giancarlo Elia Valori is an eminent Italian economist and businessman. He holds prestigious academic distinctions and national orders. Mr. Valori has lectured on international affairs and economics at the world’s leading universities such as Peking University, the Hebrew University of Jerusalem and the Yeshiva University in New York. He currently chairs “International World Group”, he is also the honorary president of Huawei Italy, economic adviser to the Chinese giant HNA Group. In 1992 he was appointed Officier de la Légion d’Honneur de la République Francaise, with this motivation: “A man who can see across borders to understand the world” and in 2002 he received the title “Honorable” of the Académie des Sciences de l’Institut de France. “

Continue Reading
Comments

Science & Technology

The Promise of Blockchain in Mega Sport Events

Published

on

Authors: Dr. Aiman Erbad and Dr. Mohamed Abdallah

Amid the excitement and anticipation of the FIFA World Cup Qatar 2022TM, sport remains a business. Like other global industries, the adoption of technology innovations is driving greater efficiency and transparency to generate benefits for sports organizations, leagues, clubs, and fans.

Researchers at the College of Science and Engineering (CSE), Hamad Bin Khalifa University (HBKU), make the case for adopting blockchain-powered solutions in delivering seamless sport mega events by outlining some of the top use cases.

Understanding blockchain

“Blockchain can solve many real-world problems,” explains Dr. Mohamed Abdallah, Associate Professor in the Division of Information and Computing Technology (ICT) at CSE.

“For mega sport events, the benefits can be exceptional. Because of its transparent data structure, blockchain can facilitate secure and reliable data exchange at the individual, institutional, or national systems level as needed, without the need for intermediaries to ensure mutual trust and the authenticity of the data exchanged.”

The chaos of the UEFA Champions League final between English team Liverpool and Spanish club Real Madrid in May 2022, which resulted from the illegal distribution of non-validated tickets, is likely to have accelerated the recognition of blockchain’s benefits for the sport industry. The ensuing government inquiry unequivocally called for using blockchain for ticketing to prevent a similar fiasco at future events. A closer look at the nature of this cutting-edge technology reveals why.

How blockchain works

By its functional nature, a blockchain is a distributed (or shared) digital ledger that stores encrypted blocks of transaction data securely chained together in chronological order. Unlike other ledgers or databases, blockchain combines unique security features based on cryptographic techniques and its chronological chain structure.

In its standard form, blockchain provides immutability (data entered is permanently recorded), transparency (data is visible to everyone involved), and decentralization (all computers in the network have a copy of the blockchain to collectively maintain control). These features facilitate a tamper-proof, reliable way of storing, exchanging, and tracking information.

A key use case for mega events: preventing ticketing scandals

Dr. Abdallah and Dr. Aiman Erbad, Associate Professor and Head of ICT at CSE, add their expert voices to arguments that the UEFA Champions League final chaos could have been prevented using a blockchain platform with a self-enforcing contract capability to facilitate a secure ticket purchase process.

In practical terms, tickets can be stored on the blockchain denoted with unique cryptographic tokens. Each ticket can be linked to the authentic owner, providing traceability and accountability that prevents forgery. In this way, it can effectively reduce the impact of bots and/or scammers buying large numbers of tickets for illegal resale.

Using blockchain-based “smart contract” technology, ticketing entities can set the required resale rules to ensure a fair and secure market. These digital contracts can facilitate transactions between buyers and sellers while maintaining data accountability and traceability.

A related use case is storing the chain of ticket ownership. These records cannot be forged since changes are verified and tracked, ensuring data integrity. It can help customers validate the authenticity of tickets to avoid being trapped by ticketing scams.

Other use cases in sport

Blockchain-powered fan engagement is a growing use case for the sports industry. Several professional leagues and clubs are using blockchain to establish trustworthy fan databases that facilitate the distribution of “fan tokens”. With the status of a digital asset (created on a blockchain), the tokens can be redeemed by fans for rewards such as VIP experiences or ticket promotions. The increased fan engagement can potentially create new revenue streams for clubs; for example, incentivizing them to attend more events in person. Fan tokens have been rolled out by professional sports teams all over the world, including Paris Saint-Germain and FC Barcelona.

In another use case, the market for sports collectibles and memorabilia can leverage blockchain to establish trust and traceability. Experts have warned that fraud is rampant in the sports collectibles and memorabilia market. Blockchain can ensure the authenticity of special items through the use of digital identities.

CSE’s own blockchain-based applications

CSE faculty members are developing innovative use cases for blockchain in a range of applied settings.

“Our research focuses on the applicability of blockchain in solving real-world problems, such as securing data access in healthcare and decentralized trading,” says Dr. Erbad.

“We also study the technical aspects of blockchain to enhance its security, privacy, and efficiency. We have investigated the possibility of reducing energy consumption in public blockchains and developed an energy-efficient consensus algorithm. In other areas, we have also investigated using artificial intelligence in combination with blockchain smart contracts, called Rational Contracts, to provide smart resource trading with optimal prices in smart city applications.”

Among CSE’s blockchain-based applications are a trading platform for electric vehicle charging in smart cities, a decentralized ride-sharing service, a privacy-preserving decentralized stock exchange platform, a scalable energy trading sealed-bid auction mechanism, real-time secure health data exchange system, and a cooperative spectrum management system for 5G networks.

A national blueprint for Qatar

CSE had a leading role in developing the Qatar National Blockchain Blueprint in collaboration with the Communications Regulatory Authority and Qatar University. The blueprint highlights how blockchain can advance Qatar’s innovative and growing IT sector.

Essential blockchain requirements and recommendations for building a solid regulatory framework drive its pivotal goal of facilitating blockchain’s adoption at the national level, in support of Qatar National Vision 2030 and Qatar National Development Strategy. To achieve this, the blueprint outlines the conditions and incentives each sector must provide for the level of technology adoption needed to allow start-ups, pilot projects, and new companies to emerge. The strategy is an important step for Qatar, its sports, and other leading industries, to reap the societal benefits of this innovative technology.

For more information on the work of the College of Science and Engineering, please visit cse.hbku.edu.qa. To know more about Qatar National Blockchain Blueprint, please visit: https://www.cra.gov.qa/document/national-blockchain-blueprint

Continue Reading

Science & Technology

Interesting archaeological discovery in Israel

Avatar photo

Published

on

An ancient scarab from three thousand years ago was surprisingly discovered during a school trip to Azor, near Tel Aviv, Israel. The scene depicted on the scarab probably represents the conferral of legitimate power and authority on a local ruler.

“We were wandering around, when I saw something that looked like a small toy on the ground,” told Gilad Stern of the Education Centre of the Israeli Antiquities Authorityntre, who was leading the school trip. “An inner voice told me: ‘Pick it up and turn it over.’ I was amazed: it was a scarab with a clearly engraved scene, the dream of every amateur archaeologist. The pupils were really enthusiastic!”.

The visit of the Rabin Middle School eight graders took place as part of a tour guide course organised by the Education Centre of the Israel Antiquities Authority for the third consecutive year. The course enables students to teach the residents of Azor about the local archaeological heritage.

The scarab was designed in the shape of the common dung beetle. The ancient Egyptians saw in the gesture of the tiny scarab, which rolls a ball of dung twice its size where it stores its future offspring, the embodiment of creation and regeneration, similar to the gesture of the Creator God.

According to Dr. Amir Golani, an expert of the Israeli Antiquities Authority specialized in the Bronze Age period, “the scarab was used as a seal and was a symbol of power and status. It could be inserted into a necklace or a ring. It is made of silicate earthenware covered with a bluish-green glaze. It could have fallen from the hands of an important and influential personage passing through the area, or it could have been deliberately buried in the ground with other objects and after thousands of years returned to the surface. It is difficult to determine the precise original context.”

The lower, flat part of the scarab seal depicts a figure seated on a chair in front of a standing figure, whose arm is raised above that of the seated person. The standing figure has an elongated head, which seems to represent the crown of an Egyptian pharaoh. It is possible that we are seeing here a snapshot of a scene in which the Egyptian pharaoh confers power and authority on a local Canaanite.

“This scene fundamentally reflects the geopolitical reality that prevailed in the Land of Canaan during the Late Bronze Age (approx. 1500-1000 BC), when local Canaanite rulers lived under Egypt’s political and cultural hegemony (and sometimes rebelled against it)” – said Dr. Golani. “It is therefore very likely that the seal dates back to the Late Bronze Age, when the local Canaanites were ruled by the Egyptian Empire”.

Scarab seals are indeed distinctly Egyptian, but their widespread use extended beyond the borders of ancient Egypt. Hundreds of scarabs were discovered in the Land of ancient Israel, mostly in tombs, but also in settlement layers. Some of them were imported from Egypt, many others were imitated in ancient Israel by local craftsmen under Egyptian influence. The level of workmanship of the particular scarab found is not typical of Egypt and may be a product of local craftsmen.

Continue Reading

Science & Technology

Towards Efficient Matrix Multiplication

Avatar photo

Published

on

Algorithms have, over the years, helped mathematicians/scientists solve numerous fundamental operations. From the early use of simple algorithms by Egyptian, Greek, and Persian mathematicians to the shift towards more robust AI-enabled algorithms, their evolution has manifested incredible progress in the technological realm. While Artificial Intelligence (AI) and Machine Learning (ML) are extending their reach and contributions in various military and civilian domains, it is interesting to witness the application of the technology on itself, i.e., using ML to improve the effectiveness of its underlying algorithms.

Despite the increased familiarisation with algorithms over time, it remains fairly strenuous to find new algorithms that can prove reliable and accurate. Interestingly, ‘Discovering faster matrix multiplication algorithms with reinforcement learning,’ a recent study by DeepMind, a British AI subsidiary in London, published in Nature, has demonstrated some interesting findings in this regard. It revealed new shortcuts simulated by AI for faster mathematical calculations vis-à-vis matrix multiplication.

DeepMind developed an AI system called ‘AlphaTensor’, to expedite matrix multiplication. Matrix multiplication – which uses two grids of numbers multiplied together – is a simple algebraic expression often taught in high school. However, its ubiquitous use in the digital world and computing has considerable influence.

‘AlphaTensor’ was tasked with creating novel, correct, and efficient algorithms to carry out matrix multiplication with the least number of steps possible. The algorithm discovery process was treated as a single-player game. It used AlphaZero – the same AI agent which gained global traction when it displayed extraordinary intelligence in board games like Chess and Go.

AlphaTensor conceptualised the board into a 3-D array of numbers which, through a limited number of moves, tried to find the correct multiplication algorithms. It uses reinforcement learning, where the neural networks interact with the environment toward a specific goal. If the results are favourable, the internal parameters are updated. It also uses Tree Search, in which the ML explores the results of branching possibilities to choose the next action. It seeks to identify the most promising action at each step. The outcomes are used to sharpen neural networks, further helping the tree search, and providing more successes to learn from.

As per the paper’s findings, AlphaTensor discovered thousands of algorithms for various sizes for multiplication matrices, some of which were able to break decades-long computational efficiency records of the previously existing algorithms. They overshadowed the towering complexity of the best-known Strassen’s two-level algorithm for multiplying matrix. For example, AlphaTensor found an algorithm for solving a 4 x 4 matrice in 47 steps overperforming the Strassen algorithm, which used 49 steps for the same operation. Similarly, if a set of matrices was solved using 80 multiplication steps, AlphaTensor reduced it to only 76 steps. This development has caused quite a stir in the tech world as it is being claimed that a fifty-year old record has been broken in Computer Science.

However, the episode underlines some important implications. Given that matrix multiplication is a core component of the digital world, companies around the world have invested considerable time and resources in computer hardware for matrix multiplication. Since it is used across a wide range of domains, including computing, processing images, generating graphics, running simulations, digital communication, and neural networks etc. – to name a few, even minor improvements in matrix multiplication’s efficiency could have a notable and widespread impact in the concerned fields.

The findings manifest the potential of ML to solve even more complicated mathematical problems. The automatic discovery of algorithms via ML offers new capacities to surpass the existing best human-designed algorithms. It introduces new ML techniques, which have the potential to increase computing speed by 20 percent leading to much more feasible timelines. It is pertinent to mention that a lesser number of operations lead to not only lesser time but also less amount of energy spent.

The finding has presented a model to gamify ML to solve mathematical operations. It exhibited that AlphaZero is a potent algorithm that could be used beyond winning traditional games and be applied to solving complex mathematical operations/tasks.

This DeepMind discovery can pave the way for future research on understanding matrix multiplication algorithms and be an inspiration to use AI for algorithm discovery for other computing tasks and set the stage for a possible breakthrough in the field. 

The increased efficiency of matrix multiplication has once again brought into light the ever-expanding potential of AI. To be fair, such developments do not infer that human programmers would be out of the job soon; rather, at least for now, it should be seen as an addition of an optimisation tool in the coder’s arsenal, which could lead to more innovative discoveries in the future with remarkable implications for the world.

Continue Reading

Publications

Latest

Economy60 mins ago

Why America Aims to Deindustrialize Europe

Imperialism has always been — and always is — control of foreign governments. This is especially control of those governments’...

Middle East4 hours ago

When Mr. Xi comes to town

Pomp and circumstance are important. So are multiple agreements to be signed during Chinese President Xi Jinping’s visit to Saudi...

Russia6 hours ago

Russia’s Military Diplomacy in Africa: High Risk, Low Reward and Limited Impact 

The South African Journal of International Affairs, a foreign policy think tank, has released a special researched report on Russia-Africa....

Energy9 hours ago

Renewable and Energy Transition: Towards a Stronger Future

One of the key UN programs under the SDGs is the energy transition and management of the current global energy...

South Asia11 hours ago

Narratives and Discourses: Evaluating 75 years of Indian Foreign Policy

As India celebrates its 75 years of Indian foreign policy and its positioning in the global architecture, it needs to...

East Asia13 hours ago

Historical Issue of Comfort Women and How It Remains a Thorn in Japan – South Korea Relations

Japan and South Korea are the neighboring states who are just 50 kilometers apart from each other from Tsushima to...

Economy17 hours ago

Women Participation in Workforce Of Pakistan: Is It A Gender Inequality?

There is a gender wage gap that disproportionately affects low-income women across a wide range of countries, industries, and occupations....

Trending