Connect with us

Energy News

Salt and a battery – smashing the limits of power storage

Published

on

by Caleb Davies

Thanks to the renewables’ boom, the limiting factor of the energy revolution is not power supply as much as power storage these days. Cleaner, greener batteries are needed to charge our cars, ebikes and devices for longer.

We have all been there. The rectangular icon in the top right-hand corner of the screen turns red and flashes to indicate you’re almost out of battery. But the problems with batteries go far beyond this kind of minor inconvenience. Batteries are a crucial part of our green energy future but also an imperfect one.

In future, a large portion of our energy will come from renewable sources such as solar and wind. But there are times when the wind does not blow and the sun does not shine. To even out supply, we need to store the surplus electricity generated by renewables, until we are ready to consume it. One important means of doing so is with better batteries. We also need huge numbers of batteries if we are to power the envisioned fleets of electric cars and mobility devices.

The trouble is, even the best batteries have problems. One big sticking point is that lithium-ion cells use lithium as a key component. This is mined as salt. Europe does not presently have any large reserves, so relies on imports from only a small number of places, such as Australia and Chile. Lithium batteries are also expensive, have a limited storage capacity, and lose performance after repeated charging.

If we are to make them better, first we need to understand how they work. Traditional lithium-ion batteries have three key components. There are two solid components called electrodes – the anode and the cathode – and a liquid called the electrolyte. When the battery discharges, electrons stream out of the anode to the cathode to power whatever device it’s connected to. Positive lithium ions diffuse through the electrolyte, attracted to the negative charge of the cathode. When the battery is being charged up, this goes in reverse.

Energy density

The whole process is a reversible electrochemical reaction. There are many flavours of this basic process with different kinds of chemicals and ions involved. A particular option being explored by the ASTRABAT project is to do away with the liquid electrolyte and make it a solid or gel instead. In theory, these solid-state batteries have a higher energy density, meaning they can power devices for longer. They should also be safer and quicker to manufacture, since, unlike typical lithium-ion batteries, they don’t use a flammable liquid electrolyte.

We need to continue to invest in research to validate the next generation of batteries.

Dr Sophie Mailley, ASTRABAT

Electrochemist Dr Sophie Mailley at the Atomic Energy and Alternative Energies Commission (CEA) in Grenoble, France, is the ASTRABAT project coordinator. She explains that lithium-based solid-state batteries do already exist. But such batteries use a gel as the electrolyte and only work well at temperatures of about 60 C, meaning they are unsuitable for many applications. ‘It’s clear that we need to innovate in this area to be able to face the problems of climate change,’ said Dr Mailley.

She and her team of partners have been working on perfecting a recipe for a better solid-state lithium battery. The job involves looking at all sorts of candidate components for the battery and working out which ones work best together. Dr Mailley says they have now identified suitable components and are working out ways to scale up manufacturing of the batteries. 

One question she and her team plan to investigate next is, whether it will be easier to recycle lithium and other elements from solid-state batteries compared to typical lithium-ion batteries. If it is, that could increase the recycling of lithium and to reduce dependence on imports.

Dr Mailley estimates that if the research goes well, solid-state lithium batteries like the one ASTRABAT is working on could be entering commercial use in electric cars by about 2030. ‘I don’t know if it is these solid-state batteries that will be the next important battery innovation,’ said Dr Mailley. ‘There are a lot of other possible solutions, like using manganese or sodium (instead of lithium). Those might work out. But we need to continue to invest in research to validate the next generation of batteries,’ she said.

Positively charged

When it comes to storing energy for the purposes of smoothing out supply to electricity grids, batteries need be reliable and high capacity, which means expensive. Scarce lithium isn’t the best choice. Instead, the HIGREEW project is investigating another different kind of battery, known as a redox flow cell.

The main components of redox flow batteries are two liquids, one positively charged, one negatively charged. When the battery is in use, these are pumped into a chamber known as a cell stack, where they are separated by a permeable membrane and exchange electrons – creating a current.

The project’s co-ordinator is chemist Dr Eduardo Sanchez at CIC energiGUNE, a research centre near Bilbao in Spain. He explains that plenty of large-scale redox flow batteries are already in operation around the world and they are designed to be stable, lasting about 20 years. But these existing batteries use vanadium dissolved in sulfuric acid, which is a toxic and corrosive process. Safety requirements mean these batteries must be manufactured at great expense.

I would say we have a bloom here in Europe, with a lot of companies working on flow batteries.

Dr Eduardo Sanchez, HIGREEW

‘Vanadium has lots of strengths – it’s cheap and stable,’ said Dr Sanchez. ‘But if you have a leak from one of these batteries, that’s not nice. You must design the tanks to be extremely durable.’

Less toxic

The HIGREEW project is planning to create a redox flow battery that uses far less toxic materials such as salt solutions in water which stores carbon-based ions.  Sanchez and his team of colleagues have been working on developing the best recipe for this battery, screening many different combinations of salts and chemical solutions. They have now come up with a shortlist of a few prototypes that perform well and are working on scaling these up.

Work on one huge prototype battery is ongoing at the CIC energiGUNE centre. ‘We have to ensure that they maintain their good performance at scale,’ said Dr Sanchez.

His team have also been investigating a method of dipping commercially available battery membrane materials so as to chemically alter them, making them last longer.

Dr Sanchez sees a bright future for redox flow batteries. ‘I would say we have a bloom here in Europe, with a lot of companies working on flow batteries.’ He predicts that manufacturing redox flow batteries could bring abundant employment opportunities to Europe in the coming years.

The research in this article was funded by the EU. This article was originally published in Horizon, the EU Research and Innovation Magazine.  

Continue Reading
Comments

Energy News

Greenpeace tells Big Oil to stay clear of Congo’s carbon bomb

Published

on

The world’s largest oil and gas companies are urged by Greenpeace to sit out a major oil and gas auction in the Democratic Republic of Congo (DRC) at the end of July. In letters sent to oil companies worldwide, Greenpeace warns of an ominous auction at the expense of biodiversity and global climate. The massive auction – fiercely opposed by local communities – overlaps peatlands and several Protected Areas.

Yesterday, DRC’s Oil Minister Didier Budimbu announced the auction covers 27 oil and three gas fields, exceeding the government’s decision in April, potentially without a legal mandate. The April plan encompassed an area more than 240,000 km² – an area about 300 times the size of Nairobi. The decision came only five months after the signing of a $500 million deal at the COP26 to help protect DRC’s forests with the Central African Forest Initiative (CAFI).

“This auction not only makes a mockery of DRC’s posturing as a solution country for the climate crisis – it exposes Congolese people to corruption, violence, and poverty that inevitably come with the curse of oil, as well as more heat waves and less rains for all Africans, said Irene Wabiwa, International Project Lead for the Congo forest campaign at Greenpeace Africa. 

In a field trip last week to four of the designated oil blocks, Greenpeace Africa’s forest campaigners collected testimonies from local communities that were all shocked about the prospective auction of their lands to oil companies. Some communities, such as those living around the Upemba national park, see the prospective oil exploration as a direct threat to the lake they rely on for generations and are planning to resist it.

In a letter sent to oil and gas companies in Africa, Europe and the US, Greenpeace warns of oil blocks overlapping carbon-rich peatlands. In a recent article, Prof. Simon Lewis of the University of Leeds notes four blocks overlapping peatlands that store 5.8 billion tons of carbon – that is equivalent to more than 15 percent of global energy-related CO2 emissions in 2021. According to the International Energy Agency, any new fossil fuel project today would undermine reaching net-zero emissions by 2050 and this auction would be particularly toxic. 

“The international community and the Congolese government must end the neocolonial scramble for African fossil fuels by restricting oil companies’ access to the DRC, focusing instead on ending energy poverty through supporting clean, decentralised renewable energies” added Irene Wabiwa.

Contrary to repeated claims by Minister Budimbu that none of the oil and gas blocks to be auctioned lies within Protected Areas, official maps show that nine do.  The Minister acknowledged his miscommunication on 13 June. Following the augmentation of the auction, the updated number of blocks overlapping Protected Areas may be as high as 12. 

It remains unclear which oil companies are planning to bid in the auction. In a petition launched by Greenpeace with local and international partners, almost 100,000 people call on Congolese President Felix Tschisekedi not to sacrifice the rainforest to the oil industry.

This auction is taking place in the midst of a new global scramble for African fossil fuels reserves, from West African gas, through East African oil, even to importing South African coal

Greenpeace Africa calls on governments in the continent to put the interest of their people over the greed of rich nations and their multinational corporations by accelerating investments in renewable, clean and decentralised energy. And urges  all oil and gas companies to refrain from participating in the neocolonial scramble for African fossil fuels.

Continue Reading

Energy News

Waste incineration and ‘recycled carbon fuel’, putting stokes in the renewable energy wheel

Published

on

Today the Committee on Industry, Research and Energy (ITRE) – European Parliaments’ lead committee on the revision of the Renewable Energy Directive (RED) – called for the Member States to take measures to ensure that energy from biomass is produced in a way that minimises distortive effects on the raw material market and harmful impacts on biodiversity, the environment and the climate. To that end, Member States shall take into account the waste hierarchy and the cascading principle.

As part of the measures, it requires the Member States to terminate support for the production of energy generated from the incineration of waste if the separate collection and the waste hierarchy obligations outlined in the Waste Framework Directive have not been complied with. 

Janek Vähk, Climate, Energy and Air Pollution Programme Coordinator: “Although a step in the right direction, the proposed criteria is a weak qualifier, given that, at incineration plants, the ‘biodegradable waste’, is never combusted without fossil-derived materials present. Thus, it remains possible for ‘renewable energy’ to be generated while emitting large quantities of fossil-derived CO2. Incineration plants are already the most carbon intense source of power in some Member States”. 

Vähk added, “We call for the criteria for the use of wastes to be improved so that no support for renewable energy is offered for the combustion of mixed waste”.

The committee also has decided to keep recycled carbon fuels – i.e. potentially plastic based fuels – as part of the Renewable Energy Directive, allowing non-renewable energy sources to contribute towards the EU renewables targets.  A recent study showed that plastic-derived fuel produces higher exhaust emissions compared to diesel. 

Lauriane Veillard, Policy Officer on Chemical Recycling and Plastic-to-Fuels: “Why does the European Parliament keep recycled carbon fuels as part of Renewable Energy Directive, when the definition itself recognizes the non-renewable sources of these fuels? This is greenwashing and will strongly undermine efforts to decarbonise the transport sector. We call on co-legislators to fully exclude the use of fossil based-fuels as part of the RED.”   

Continue Reading

Energy News

Impacts Of Nuclear Waste Disposal

Published

on

Terrorism

Nuclear energy has long been regarded as an excellent option to provide the electricity needed to heat and light our houses. Without emitting greenhouse gases, it can produce electricity. But following several horrific accidents at nuclear power facilities throughout the globe, people are becoming increasingly aware that, if not handled wisely, nuclear power poses a severe threat to our way of life.

The storage of nuclear (radioactive) waste has also raised safety and health concerns. Fortunately, functioning nuclear power facilities now have extreme safety measures in place, making them much safer than they once were. However, they continue to produce tonnes of hazardous trash every year. The Utility Bidder greatly emphasizes the efficient disposal of nuclear energy waste.

In order to ensure that all nuclear waste is disposed of safely, carefully, and with the least amount of harm to human life possible, nuclear power plants and other businesses must adhere to several essential and stringent regulations. Nuclear waste disposal, also known as radioactive waste management, is a significant component of nuclear power generation.

However, the amount of radioactive waste left behind from nuclear power plants is relatively tiny compared to the waste produced by other energy-generating techniques, such as burning coal or gas. However, it can be expensive, and it must be done perfectly.

Dangers Of Nuclear Waste Disposal

Nuclear waste is often stored in steel containers that are placed within a second concrete cylinder for disposal purposes. These shielding layers stop radiation from entering the environment and endangering the environment around the nuclear waste or the atmosphere.

It is a pretty simple and affordable means of keeping very hazardous compounds. For example, it doesn’t require special transportation or storage in a particular spot. However, certain risks are associated with the disposal of nuclear waste.

Extended Half-Life

Because the by-products of nuclear fission have long half lifetimes, they will remain radioactive and dangerous for tens of thousands of years. It indicates that nuclear waste might be exceedingly volatile and harmful for many years if something happens to the waste cylinders in which it is kept.

That makes it relatively simple to locate hazardous nuclear waste, which means that if someone were looking for nuclear waste with bad intentions, they might very well be able to find some and use it. That is because hazardous nuclear waste is frequently not sent off to particular locations to be stored.

Storage Of Nuclear Waste

The question of storage is another difficulty with nuclear waste disposal that is still under discussion. Due to the difficulties involved in keeping such dangerous material that would remain radioactive for thousands of years, many alternative storage techniques have been considered throughout history. Among the ideas considered were above-ground storage, launch into space, ocean disposal, and ice-sheet disposal. Still, very few have been put into practice.

Only one was put into practice; ocean disposal, which involved discharging radioactive waste into the sea, was adopted by thirteen different nations. It makes sense that this practice is no longer used.

Effects On Nature

The potential impact of hazardous materials on plants and animals is one of the main worries that the globe has regarding the disposal of nuclear waste. Even though the trash is often tightly sealed inside enormous steel and concrete drums, accidents can still happen, and leaks might occur.

Nuclear waste can have highly detrimental impacts on life, such as developing malignant growths or transmitting genetic defects to subsequent generations of animals and plants. Therefore, improper nuclear waste disposal can significantly negatively affect the environment and endanger millions of animals and hundreds of different animal species.

Health Impacts

The most considerable worry is the harmful consequences radiation exposure can have on the human body. Radiation’s long-term effects can potentially lead to cancer. It’s intriguing to realize that we are naturally exposed to radiation from the ground underneath us just by going about our daily lives. The “DNA” that ensures cell healing can change due to radiation.

Transportation

Problems can occasionally arise when transporting nuclear waste from power plants. Accidents still happen and can have catastrophic consequences for everyone nearby, despite all the precautions taken while transporting nuclear waste. For example, if radioactive material is contained in subpar transportation casks, a minor bump or crash could cause the contents to leak and impact a large area.

Scavenging Nuclear Waste

People frequently scavenge for abandoned radioactive nuclear waste, a severe issue in developing countries. People will willingly expose themselves to potentially harmful quantities of radiation in some nations because there is a market for these kinds of scavenged products. Sadly, radioactive materials can be pretty volatile and lead to various issues.

People who scavenge these materials wind up in hospitals and may even pass away from complications brought on by or connected to the radioactive materials. Sadly, once someone has been exposed to radioactive materials, they can then expose other individuals to radioactive materials who have not chosen to go scavenging for nuclear garbage.

Accidents Involving Nuclear Waste

Accidents happen, even though careful disposal of nuclear waste is frequently emphasized. Unfortunately, there have been many examples throughout history where radioactive waste was not disposed of properly.

That has led to several terrible events, such as radioactive waste being dispersed by dust storms into places where people and animals lived and contaminating water sources, including ponds, rivers, and even the sea. Animals that live in or around these places or depend on lakes or ponds for survival may suffer catastrophic consequences due to these mishaps.

Also, drinking water can get poisoned, which is terrible for locals and others near the disaster’s epicenter. Nuclear waste can eventually enter reservoirs and other water sources and, from there, go to the houses of people who unknowingly drink high radioactive material.

Severe accidents occur extremely infrequently but have a significant impact on a large number of individuals. That is true even if it only seeps into the ground. There are examples of these incidents from all over the world and from all eras.

Continue Reading

Publications

Latest

Trending