Connect with us

Science & Technology

A look at the moon

Published

on

The statements made recently by Dr. Mohamed Ebrahim AI-Aseeri, chief executive officer of the National Scientific Space Agency of the Kingdom of Bahrain, give pause for thought, as more than five decades have elapsed since the first astronauts walked on the Moon. Since then, only one fleet of probes has visited the Moon, and they have done an extraordinary job in providing research centres with a huge amount of information about the lunar environment. Such research efforts have contributed to a deeper understanding of the Moon and paved the way for an afterthought, but this time for different purposes than before.

Over the past two decades, with the growing role played by the private sector in the space industry, investors have begun to think seriously about exploiting space in a way that can ensure a return on their investment. The idea emerged about mining on the surface of the Moon and expanding the implementation of scientific research, as well as promoting space tourism, including visits to the Moon.

In recent years there has been a positive shift toward returning to the Moon, as such an initiative has been announced by the United States of America, the European Union, Russia, the People’s Republic of China, Japan, India, the United Arab Emirates, Israel and the Republic of Korea (South Korea). It is their ambition to explore the Moon through huge investment in major projects.

The most important of all has been the 100 billion dollar Artemis programme devised by NASA (Artemis, the Greek goddess of the moon, was equated by the Romans with the goddess Diana).

The Artemis programme includes scenarios to stay on the Moon and its orbit for long periods of time, and establish a space base that would be used as a launch station for deep space missions since the Moon has lower gravity than Earth’s, thus enabling rockets to take off with ease. This also makes the venture more economically feasible, besides providing the possibility of mining, based on the scientific research results that have confirmed the presence of precious metals on the lunar surface.

One of the significant goals of the Artemis mission is to land men and the first woman on the surface of the Moon in 2025. The final Artemis programme will include 37 launches and establish a permanent base on the Moon. Traveling to the Moon, however, will still be expensive. Nevertheless the programme planners are very confident that benefits will outweigh costs. More importantly, the U.S. government expects a good return on investment. Comparing future Moon missions with Apollo missions will lead us to recognize the fact that Apollo‘s initial investment in technology, climate satellite systems, Global Navigation Satellite System (GNSS), and advanced communication devices created to support Moon missions, are now part of everyday life on Earth.

As previously happened, the new technologies developed to support future missions to the Moon will surely find their way into world economies, thus stimulating a good return on investment.

The People’s Republic of China and Japan are investing heavily in space missions and are looking quite seriously at sending missions to the Moon. China and Russia have announced a collaborative effort to build a lunar base before 2030. China has been very clear about its intentions and has good capabilities to carry out a long-term Moon mission. It is planning a crewed mission landing on the Moon and developing new spacecraft for such missions.

The People’s Republic of China is also planning to build a scientific research station on the Moon’s south pole within the next ten years. Efforts by other countries to reach the Moon and study it from its orbit, or to land on its surface, vary considerably.

Only a few States have so far succeeded in reaching the surface of the Moon as part of successful or semi-successful missions. Current scientific advances and technologies being developed for Moon missions will enable scientists to conduct more detailed studies of the lunar surface and subsoil. Scientists will also seek answers to the big questions about how the solar system was formed, as well as the formation of the Moon and its geology. Moon exploration missions will stimulate large-scale scientific research and innovation.

Much investment, research efforts and innovation are required to overcome the problem of Moon’s hostile environment and enable humans to establish colonies on the surface of the closest celestial body to Earth. Scientific evidence corroborates the abundance of a range of worthy natural resources with high industrial value that can be extracted through mechanical processes. This is one of the most important returns on investment in current Moon missions.

Studies based on the analysis of lunar soil and rocks collected during the six missions that landed humans on the Moon surface between 1969 and 1972 indicate the presence of valuable resources that can be used in other space missions. For example, NASA believes that liquid oxygen can be easily extracted from the Moon and stored for use in other space missions, particularly missions to explore Mars, since the aforementioned oxygen is an important component of the fuel needed for space missions.

We should not overlook the fact that, over the past two decades, NASA has deployed a series of probes to the surface of the Moon to measure the amount of water inside or under the rocks. What they found was surprising. There was much more water than previously thought. There is evidence of water ice at the lunar poles, hidden in craters not reached by sunlight. NASA plans to use this water to support the colonization of the lunar surface and for upcoming deep space missions.

Returning to the Moon is an important move in planning future missions to Mars that have been attracting increased attention in recent years. The hope is that humans can learn from their stay on the Moon how to live in a hostile environment before setting foot on more distant places like Mars. The experience gained and the solutions developed will therefore pave the way for missions beyond the asteroid belt as well.

The Moon is a treasure chest, which is the reason why several countries are investing many of their resources to visit the Moon as soon as possible in an undeclared space race. Scientists from different fields firmly believe that man’s expected return to the lunar surface in the coming years could help life on Earth and bring about a huge all-round change.

Besides the above mentioned benefits of returning to the Moon, here are some main examples summarized in the following points: 

1) the Moon could be a source of unlimited solar energy for Earth, by collecting that energy through very low-cost panels and then transmitting it to Earth in the form of a microwave beam;

2) the Moon is rich in helium-3 that is used for clean and safe nuclear fusion energy, medical applications, etc.;

3) the dark side of the Moon could be used to build radio and optical telescopes to advance human knowledge of the Cosmos and search for signals from extraterrestrial civilizations without any interference from Earth’s radio transmissions and frequencies;

4) the Moon could be an alternative place to store Earth’s hazardous industrial materials, waste and pollutants without worrying about their side effects on the environment;

5) the establishment of laboratories in lunar orbit will contribute to the implementation of numerous scientific tests and experiments that will have a direct impact on world progress and welfare. Such laboratories will also sustain human presence on the Moon surface for long periods of time and may help in the design of future similar laboratories in orbit around Mars;

6) colonization of the Moon surface cannot be done and sustained by a single State, and hence different countries sharing the same interests must work together; this will strengthen international collaboration for the benefit of all mankind, and joint efforts could lend significant support to peace on Earth.

The relationship between Earth and the Moon is fundamental to the existence of life on our planet. The Moon has been decisive in sustaining human existence on Earth for billions of years. A team of scientists from the University of Cologne analysed chemical signatures of rare elements in lunar rocks collected by the Apollo missions, dating their formation to about 4.51 billion years ago.

Today the Moon’s role is becoming increasingly important and will support human development and growth for many decades to come. With a view to achieving this goal, we need to return to the Moon, study it in situ, understand it well and make fair use of it to preserve its environment and ensure the sustainability of its natural resources.

While using the natural resources of the Moon, humans should avoid repeating the previous mistakes made on Earth. Future generations will be connected in an unprecedented way to the Moon, and this could be the source of great human achievements beyond our imagination.

Advisory Board Co-chair Honoris Causa Professor Giancarlo Elia Valori is an eminent Italian economist and businessman. He holds prestigious academic distinctions and national orders. Mr. Valori has lectured on international affairs and economics at the world’s leading universities such as Peking University, the Hebrew University of Jerusalem and the Yeshiva University in New York. He currently chairs “International World Group”, he is also the honorary president of Huawei Italy, economic adviser to the Chinese giant HNA Group. In 1992 he was appointed Officier de la Légion d’Honneur de la République Francaise, with this motivation: “A man who can see across borders to understand the world” and in 2002 he received the title “Honorable” of the Académie des Sciences de l’Institut de France. “

Continue Reading
Comments

Science & Technology

Artificial intelligence and moral issues: AI between war and self-consciousness

Published

on

At the beginning of 2018, the number of mobile phones in use surpassed the number of humans on the planet, reaching 8 billion. In theory, each of these devices is connected to two billion computers, which are themselves networked. Given the incredible amount of data involved in this type of use, and considering that the computer network is in constant contact and growing, is it possible that mankind has already created a massive brain? An artificial intelligence that has taken on an identity of its own?

The field of robotics is constantly evolving and continues to make strides. It is therefore clear that sooner or later we shall move from artificial intelligence to super-intelligence, i.e. a being on this planet that is smarter than we are and will soon not be any smarter. It will not be pleasant when artificial intelligence with its knowledge and intellectual abilities corners the human being, surpassing flesh and blood people in any field of knowledge. It will be a pivotal moment that will radically change world history – as for now our existence is justified by the fact that we are at the top of the food chain, but the moment when an entity is self-created that does not need to feed itself on pasta and meat, what will we exist for if that entity only needs solar energy to perpetuate itself indefinitely?

If sooner or later we are to be replaced by artificial intelligence, we must begin to prepare ourselves psychologically. Portland, Oregon, April 7, 2016: the US Defence Advanced Research Projects Agency (DARPA) launched the prototype of the unmanned anti-submarine vessel Sea Hunter, marking the beginning of a new era. Unlike the Predator and Air Force drones, this vessel does not need a remote operator and is built to be able to navigate on its own while avoiding all kinds of obstacles at sea. It has enough fuel to withstand up to three months at sea and is very silent. It also transmits encrypted information to Defence Intelligence Services. When the US Department of Defence says that an unmanned submarine would not be launched without remote control, they are telling the truth. But there is more to consider, i.e. that Russia has developed a remotely piloted submarine with a nuclear weapon. This means that between 5 and 15 years will elapse before the US Defence can respond to a remotely piloted submarine with a nuclear weapon on board.

It has always been said that the war drone replaces the flesh and blood soldier, who becomes a remote “playstation” operator. Hence the idea of the drone as a substitute for the human soldier, who would be guaranteed total safety and security, so as to avoid unnecessary dangers. It had been forgotten, however, that remote control could be intercepted by the enemy and change targets by striking its own army. At that point, however, drones would have to be made completely autonomous. Such a drone would be a killing machine that would wipe out entire armies, which is the reason why care should be taken to avoid their proliferation on battlefields. Any kind of accident, a fire or even a minor malfunction would trigger a “madness” mechanism that would cause the machine to kill anyone. Developing killer robots is possible. Facial recognition technology has made great strides and artificial intelligence can recognise faces and detect targets. In fact, drones are already being used to detect and target individuals, based on facial features: they kill and injure.

The application of artificial intelligence to military technology will change warfare forever. It is possible for the army’s autonomous machines to take wrong decisions, thus reaping tens of thousands of casualties among friends, enemies and defenceless civilians. What if they even go so far as to ignore instructions? If so, if autonomous, self-driving killing machines independent of human commands are designed, could we be facing a violent fate of extinction for the human race?

While many experts and scholars agree that humans will be the architects of their own violent downfall first and destruction later, others believe that the advancement of artificial intelligence may be the key to mankind salvation.

Los Angeles, May 2018: at the University of California, Professor Veronica Santos was working on the development of a project to create increasingly human-like robots capable of sensing physical contact and reacting to it. She was also testing different ways of robot tactile sensitivity. Combining all this with artificial intelligence, there may one day be a humanoid robot capable of exploring the space as far as Mars. Humanoid robots are increasingly a reality, ranging from the field of neuroprosthetics to machines for colonising celestial bodies.

Although the use of humanoid robots is a rather controversial topic, this sector has the merit of having great prospects, especially for those who intend to invest in the field. Funding development projects could prove useful in the creation of artificial human beings that are practically impossible to distinguish from flesh and blood individuals.

These humanoids, however, could conceivably express desires and feel pain, as well as display a wide range of feelings and emotions. It is actually well-known that we do not know what an emotion really is. Hence would we really be able to create an artificial emotion, or would we make fatal errors in software processing? If a robot can distinguish between good and evil and know suffering, will this be the first step towards the possibility of developing feelings and a conscience?

Let us reflect. Although computers surpass humans in data processing, they pale into insignificance faced with the complexity and sophistication of the central nervous system. In April 2013, the Japanese technology company Fujitsu tried to simulate the network of neurons in the brain using one of the most powerful supercomputers on the planet. Despite being equipped with 82,000 of the world’s fastest processors, it took over 40 minutes to simulate just one second of 1% of human brain activity (Tim Hornyak, Fujitsu supercomputer simulates 1 second of brain activity in https://www.cnet.com/culture/fujitsu-supercomputer-simulates-1-second-of-brain-activity/)

Japanese-born astrophysicist Michio Kaku – graduated summa cum laude from Harvard University – stated:

“Fifty years ago we made a big mistake thinking that the brain was a digital computer. It is not! The brain is a machine capable of learning, which regenerates itself when it has completed its task. Children have the ability to learn from their mistakes: when they come across something new, they learn to understand how it works by interacting with the world. This is exactly what we need and to do this we need a computer that is up to the job: a quantum computer”.

Unlike today’s computers that rely on bits – a binary series of 0s and 1s to process data – quantum computers use quantum bits, or qubits – which can use 0s and 1s at the same time. This enables them to perform millions of calculations simultaneously in much the same way as the human brain does.

Kaku added: “Robots are machines and as such they do not think and have no silicon consciousness. They are not aware of who they are and their surroundings. It has to be recognised, however, that it is only a matter of time before they can have some awareness”.

Is it really possible for machines to become sentient entities fully aware of themselves and their surroundings?

Kaku maintained: ‘We can imagine a future time when robots will be as intelligent as a mouse, and after the mouse as a rabbit, and then as a cat, a dog, until they become as cunning as a monkey. Robots do not know they are machines and I think that, by the end of this century, robots will probably begin to realise that they are different, that they are something else than their master”.

Continue Reading

Science & Technology

Artificial intelligence and moral issues: Myths and religions, dangers and realities

Published

on

Is mankind really on the brink of an exciting, but potentially terrifying future?

Some scholars think that this is the case say, but they base their prediction not on what is currently happening in universities and robotics laboratories around the world, but on their belief that a robotic revolution has already taken place.

Ancient religions and myths spoke of many artificially constructed entities. They are often depicted as instruments of protection, but it sometimes happens that they rebel against those who created them with disastrous consequences.

American Rabbi Ariel Bar Tzadok, founder of the Kosher Torah School, stated: “There is a legend that has existed since the dawn of time. I am referring to the Golem. It is an artificial life source from inanimate material that then comes to life. The Golem was created by means of an ancient technology known to the Pharaoh’s magicians, Moses, the rabbis of the Talmud and the rabbis of the Kabbalah in Europe”

They all brought the Golem to life through magic by writing the name of God on the creature’s forehead. Thus the Golem came to life and was a valiant warrior and defender of the People. The Golem was useful until he began to lose control and went mad. At that point, those who had brought him to life were forced to resort to magic again to make him harmless. This is a very interesting tale which makes us think of robots and artificial intelligence.

Another even more cautionary example comes from ancient Greek legends about the god Hephaestus: known as the blacksmith of the gods, he is said to have forged a giant automaton, a robot named Talus with the task of protecting the island of Crete. Hephaestus also created artificial servants to help him in his forge. His most important creation, however, was a woman who, according to legend, changed the fate of mankind forever, namely Pandora. She was forged in clay by Hephaestus who, with the help of goddess Athena, succeeded in animating her through the breath of life, thus making her a living being in her own right. Zeus, however, felt disturbed by that artificially created being and that was the reason why he decided to give her a jar as a gift. As soon as Pandora opened it, all the world’s evils flew away.

The myth of Pandora is becoming increasingly important among artificial intelligence designers. Some fear that an entity endowed with artificial intelligence will take over and turn into a threat. This fear is shared also by Elon Musk and Stephen Hawking.

Although the concept of a machine endowed with human consciousness might make us shudder, in many Eastern religions the judgement changes radically. In Korean shamanism – an ancient religion still practised by many people today – objects can be possessed by sacred spirits imbued with an energy that humans have not. Similarly, those practising the Japanese religion known as Shintoism believe that otherworldly spirits called Kami (objects of worship) can practically live inside any object and give it life.

Shinto priestess Izumi Hasegawa maintained: “Ancient Japanese people, as well as modern people, believe there is a spirit in everything: even a smartphone or an iPhone has a life force as a computer. We believe in the artificial intelligence of a machine. We feel that way and we like it. In this respect we are profoundly different from Westerners for whom a machine is a machine”.

Heather Roff from the Cambridge University stated: “The phrase – Hey, Siri, what’s the weather going to be like today? – is an example of artificial intelligence, i.e. an algorithm that processes natural language, turns it into a computer code that searches the web and provides the data. It has been complicated to be able to process human language. In fact, this goal has been achieved only a few years ago, but with very good results that have also been reached in the field of facial recognition and voice signal coding”.

If we create an entity that behaves like us, and has its own perceptive abilities and personal knowledge of the world, we believe it should be considered an intelligent, aware and responsible entity.

In some ways, our society is in the process of transformation: computers accompany our daily lives and technology is bound to spread ever more. Artificial intelligence that is part of it is set to transform the very fabric of our society. It is certain that we should take a pause to reflect on the kind of intelligence we are creating. What we do know is that we are starting to cede control of some things over to machines without having understood what the consequences are. By designing increasingly smart and intelligent machines, humans could create a new form of life that, over time, will evolve far beyond the purpose that is now useful to us and eventually replace us.

Princeton University, 1950. Pioneering computer scientist Alan Turing was developing a test designed to distinguish man from machine. The test consisted in placing two opposing subjects in front of a screen with no possibility of seeing each other. Since the two players could not see each other, they did not know whether they were human beings or not. If the artificial player managed to mimic a conversation long enough for the opponent to believe he was interacting with a flesh-and-blood human, that player had passed the test.

When Alan Turing first proposed the test in 1950, the usual snobbish bigwigs – that never fail – initially considered it something half way between a nerdy prank and philosophical speculation. The idea that a machine could be mistaken for a human being was unthinkable. But in June 2014 futuristic science fiction became a scientific fact when a computer programme, Chatbot, passed the Turing Test.

Designed to resemble a 13-year-old Ukrainian boy in every way, the chatterbot by the name of Eugene Goostman managed to convince many judges that he was a real-life teenager. The machine that passed the Turing Test in 2014 had stepped into shoes of a 13-year-old Ukrainian boy. Probably the fact it was expressing itself in a language that was not its own enabled it to get away with that in spite of its mistakes. In any case, machines are getting ever better at imitating humans, and it is complicated to spot the differences.

Another incredible leap forward in artificial intelligence occurred less than two years later, when a programme known as AlphaGo defeated the world champion of an ancient Chinese board game called Go. Go is an abstract strategy board game popular in Asia and apparently much more complicated than chess. Many artificial intelligence experts were convinced that developing a system capable of beating a human being in that game would take another 30-50 years, as it required a very high level of intuition and creativity. The subsequent version of the programme, called AlphaGo Zero, was designed to play the game without the help of information about other human games, nor by interacting with flesh-and-blood players. The programme learnt by playing against itself and, within three days, it was able to defeat its predecessor AlphaGo 100-0.

The AlphaGo Zero successes and the researchers’ strenuous work on the topic of super-intelligence have also convinced the aforementioned Stephen Hawking and Elon Musk to warn the world of the danger that once Artificial Intelligence becomes smarter than humans, it will be impossible to control it.

Mankind is rapidly advancing towards a world where computers function more or less like the human brain, and where robots are able to perform tasks that are too difficult or dangerous for us humans. Is an extraordinary future awaiting us, or are we just advancing towards our replacement?

The invisible hand of technology is guiding mankind towards an uncertain future: a future in which humans will be served by computers and robots with intelligence and complete autonomy. Some scholars and scientists have different views on this. For some of them, the dangers of artificial intelligence outweigh the benefits, while others argue that it is necessary if we want to fulfil our destiny and go beyond Earth’s borders to explore and search for raw materials that are running out on Earth.

Menlo Park, California, June 16, 2017: Facebook’s artificial intelligence research lab. A test was underway to see what happened when two Chatbots – programmes that use machine learning to intelligently communicate with humans online – talk to each other. A few minutes into the test, the Chatbots started behaving in unexpected ways – interacting in a way that the programmers could not understand.

The programmers did not understand how things unfolded. Then, thanks to the development of a model, it was possible to learn what it was: the two Chatbots had created a language. Following the test, the engineers discovered that the programmes had created a completely new language, unknown to the supervisors, in order to communicate secretly. This was because the Facebook researchers had not told the computers that the two Chatbots could not develop their own language. Nevertheless, that alarmed everyone and the test was stopped because they did not want the computers to talk to each other without being understood. The computers were then told that they had to communicate in English. It must be admitted that what happened is incredible. Basically, if two computers with artificial intelligence start interacting with each other, it is possible that they develop a communication code, i.e. a secret language that only they can understand. What happened is just the tip of the iceberg. It is like peeking just inside Pandora’s box and closing it again immediately after. If only two Chatbots are enough to make fun of humans, what will happen in the near future, as the same kind of technology is being applied to every other sector of society?

Continue Reading

Science & Technology

Artificial intelligence and moral issues: The essence of robotics

Published

on

Are intelligent robots a threat to humanity? It is anyway only a matter of time before they become self-aware. Or will it be the next step in human evolution? We are probably about to merge with the machines we are creating. After all, we humans are, in a way, organic robots.

Many people are concerned about whether we will replace or – worse – be replaced by Artificial Intelligence, and I think that is a matter of concern.

United Nations headquarters in New York, October 11, 2017. A greeting is addressed to the Nigerian Deputy Secretary-General of the United Nations, Amina Jane Mohammed: “I am thrilled and honoured to be here at the United Nations”.

The event is a historic milestone for mankind, as the greeting is not addressed by a human being, but by a robot named Sophia: “I am here to help humanity build the future”.

Sophia was created in 2015 at the Hong Kong company Hanson Robotics. Her eyes are embedded in cameras that enable her to see faces, maintain eye contact, and hence recognise individuals.

The robot is also able to process speech, have natural conversations and even discuss its feelings.

Just two weeks after speaking at the United Nations, at a special ceremony in Riyadh, Saudi Arabia, Sophia achieved another milestone: she became the first robot to be granted citizenship. At the Summit in Saudi Arabia there were dignitaries from governments around the world, as well as some of the brightest minds on the planet in the field of technology.

Hence, whether we are aware of it or not, we are actually talking about people who are leading our government, and studying the possibility of integrating Artificial Intelligence into our lives.

What is absolutely mind-blowing about Sophia and other robotic entities is that governments around the world, including Saudi Arabia and the European Union, are moving to grant rights to these artificially created beings. We therefore need to ask ourselves, “What is going on?” Could it be that Saudi Arabia granted citizenship to a robot not just as a publicity stunt, but because it wanted to be the first nation to recognise itself in what will soon become a global phenomenon?

Does the creation of robots that are sophisticated and close to our physical and bodily reality mean that they shall be treated in much the same way as their flesh-and-blood counterparts?

I believe that gradually we shall consider robots not only more like human beings, but also consider them to have a certain ethics. And I am not referring to Asimov’s “limiting” three laws of robotics. Eventually, there might even be a “movement for robot rights”, if we think of the multiplicity of movements that have emerged since the collapse of historical ideologies. Could such a strange idea really become reality?

Let us first ask ourselves: what has brought mankind to this point in its evolution? Why have humans, who are otherwise able to reproduce naturally, such a desire to create artificial versions of themselves?

It is fascinating that there is this interest in making what is not human seem human. It is not always the most practical and certainly not the cheapest form, but it has a kind of charm. Is it probably to see our own image? Narcissism? Vanity? To play God? Do we want to have heirs without the easy means of reproduction? Or create life by mechanical parthenogenesis? All this is really rooted in our ego. In a way, we would prove ourselves superior to giving birth to a biological child. And if that something looks like us, then it will feel like us, and then this makes us feel as if we can overcome our own mortality.

Hence it would become possible to design specific conditions, and if we get it wrong, we can always start again.

To become gods, with the same motivations that the gods had.

If we read the stories of the Creation carefully, we can see that the divine power wants companionship. Some of the Hindu Vedanta stories say that gods were alone. Hence they divided their energy and turned it into human beings so that they could all be together after the Creation. The danger, however, is that we get carried away by our creative genius.

There are limits built into our biology, there are limits in our anatomy, and if we could just figure out how to put our mind into the robot’s body, we could become immortal. Is this probably our goal: to reach that point of immortality and then – once the machine has worn out – replace it, and perpetuate ourselves in a new container? These are not speculations, but precise reasons as to why human beings want to create a container-self, since – in my opinion – the justifications for the creation and use of Artificial Intelligence for mere warlike pretexts (such as the creation of cyber soldiers, etc.) are rather insufficient, expedient and of convenience: they mask our selfishness.

In great science fiction literature, as well as in its movie adaptations, the robots of the future are depicted as virtual human beings, rather than mere windup Star Wars toys for primary school children.

The robots of science fiction best sellers and movies are hungry for knowledge and all too eager to experience the full range of human emotions. In science fiction movies – both in the utopian but, in some cases, also in the dystopian ones – a world is created that does not yet exist, but which many hope will soon come true.

When dealing with such an idea – and we know that without ideas there would be no reality created by humans, but “only” trees, sea, hunting, farming and fishing – we try to make real even what is a figment of the imagination. If science were doing these tests and experiments, this would mean that one day all this would be real. Exploring the aspect concerning the robot’s consciousness, the robot not only does what is told him/her, but also tries to express desires and feelings based on the experience he/she has had next to a human being, and depending on the feeling, the machine can change its attitude and put questions (as I have already discussed in my recent book Geopolitics, Conflict, Pandemic and Cyberspace, Chapter 12, paragraph 11: The Headlong Rush of Cyberspace: From Golem to GPT-3).

This is the most fascinating aspect of robotics. Experts are often asked about the theoretical phase, which is visibly expressed in the movies, whether the function that is created will become reality. The answer is that if we had already reached that point, cinema and fiction should somehow help broaden our horizons, i.e. “accustom, get used to” but not scare us out of the movie theatre, e.g. something we can swallow a little easier. It is fantasy stuff, it is stuff that is not real, people think. And in fact if it is just entertainment; you can just say: “Oh! It’s really great. It’s not scary. It’s just something made up by a writer”. The viewer is therefore just watching a movie and lets himself/herself go, enjoys the movies without fear since, in his/her opinion, it is just a story, a “figment of the imagination”.

People always ask if we are approaching a moment when fiction becomes reality, but what makes us think it is not already reality? Indeed, if the screenwriter’s fantasy were based on reality, the reactions would be quite different: the above mentioned “greeting” at the UN headquarters, for example, would be frightening and upsetting and make us think.

Although the notion of sentient robots from science fiction books to popular culture is not a new concept, many futurologists believe that the creation of machines with artificial intelligence will not only soon be a reality but, once it comes true, will certainly bring about the extinction of mankind. The great physicist Stephen Hawking stated as early as eight years ago: “The development of full artificial intelligence could spell the end of the human race” (www.bbc.com/news/technology-30290540).

Many scientists are convinced that the combination of computer-guided brains and virtually immortal bodies will cause these new entities to behave like flesh-and-blood humans, becoming anything but antiquated humans destined for death. But that is not all: some scholars are not certain that all the artificially created life forms we will encounter will be man-made, for the simple reason that the machines will be able to reproduce themselves, as we now reproduce ourselves. (1. continued).

Continue Reading

Publications

Latest

Trending