Connect with us

Science & Technology

In battle against climate crisis, don’t overlook the blockchain

Published

on

As the world increasingly looks at using digital technology to accelerate action on issues such as climate change and biodiversity loss, blockchain is pushing to the forefront.

Blockchain is a digitally distributed, decentralized ledger that helps to verify and trace multistep transactions. While it might be best known as the architecture behind crypto-currencies like Bitcoin, it is finding uses in everything from tracking the sustainability of products to the real-time monitoring of pollution.

This technology is key to innovations in energy and climate, say experts, but so far, little attention has been given to how blockchain can be used in developing countries. A new report from the United Nations Environment Programme (UNEP) and the Social Alpha Foundation (SAF) is looking to change this picture and unlock new opportunities.

Blockchain for Sustainable Energy and Climate in the Global South: Use Cases and Opportunities explores how the technology can accelerate the transition to clean energy and help combat climate change in developing countries. It’s a publication that comes as global temperatures are on pace to rise by at least 2.7°C by the end of the century, a number UN Secretary-General António Guterres has called catastrophic.

“The world needs to almost halve emissions over the next eight years to stay on track for a 1.5°C world, while at the same time expanding access to energy to bring hundreds of millions of people onto the grid,” said Mark Radka, Chief of UNEP’s Energy and Climate Branch, referring to data from UNEP’s Emissions Gap Report 2021. “Blockchain technology can play a part by making possible more accurate load monitoring, generation and distribution in the grid through efficient use of data,” he added.

Driving innovation

Several businesses, such as Power Ledger, an Australian technology company, have begun to tap into the potential of blockchain. The company established a pilot project in the Indian state of Uttar Pradesh that allowed homeowners with solar arrays on their rooftops to sell power to others on the grid, setting prices in real time and executing transactions over blockchain.

Systems like those can help accelerate the deployment of renewable energy in developing countries and help states move away from unsustainable electricity subsidies.

The United Nations Development Programme estimates that up to $650 billion per year in renewable energy financing will be needed to meet Sustainable Development Goal 7 on energy. However, renewable energy projects can often be bogged down by financing shortfalls, high investment costs, and a lack of liquidity. These problems conspire to create a shortage of bankable projects. According to the UNEP/SAF report, blockchain’s distributed ledger technology can provide improvements by enabling renewable energy project developers, investors, and purchasers to collaborate on a common platform with established international standards for due diligence and compliance.

For example, South Africa’s Sun Exchange allows anyone with an internet connection to buy solar panels online and rent them to businesses, hospitals, schools and other organizations in Africa. Sun Exchange uses the Bitcoin blockchain for cross-border payments so that there are no intermediaries between the beneficiaries and the investors.

In 2015, the company installed its first solar power panels at a school in the Cape Town region, financed entirely by private individuals through cryptocurrencies. By 2020, the platform had 18,000 users in 162 countries.

Through the Sun Exchange’s solar installations, organizations have reduced their energy costs by 20-30 per cent and have been able to redirect these funds towards their core offerings, including quality education for children, positive living environments for elderly residents and care for vulnerable wildlife.

Addressing the negatives

But there are barriers to blockchain technology. A massive amount of computing power – and electricity – is needed to process certain transactions. In many countries that energy can be prohibitively expensive.

The report suggests that new regulatory frameworks will be key to addressing the high cost of power. For example, electricity tariffs in many places would need to be changed so that energy consumers are more likely to participate in surplus energy trading through blockchain platforms. But such regulatory frameworks and guidelines are still lacking.

The report concludes that as blockchain is still in its infancy and given the potential negative environmental impact, the technology itself needs to evolve to foster environmental sustainability at scale. Driving the penetration of blockchain and relevant emergent technologies will require improving digital infrastructure, including expanding access to affordable broadband internet and smart devices.

As blockchain and related digital technologies develop rapidly, policymakers also need to adjust regulations to spur the development of future energy systems while mitigating environmental risks.

UNEP-led partnerships, such as the recently launched Coalition for Digital Environmental Sustainability, can support these efforts by linking digital technology applications to environmental sustainability.

UNEP

Continue Reading
Comments

Science & Technology

The Race for AI, Quantum Supremacy

Published

on

On a hot summer’s morning in July, Robert Oppenheimer stood in a control bunker in New Mexico and watched the results of his Manhattan Project burn the desert sand, transforming it into a mild but lightly radioactive green glass. Years later, when asked what went through his head when he saw that great grey cloud rise out of the sand, he said he was reminded of Hindu Scripture, the line from Vishnu: ‘Now I am become Death, the destroyer of worlds’. Although, according to his brother, what he actually said after seeing the bomb explode was: ‘I guess it worked’.


As romantic as the potential of science can be, there is also a banality to the discoveries and inventions that shape our world. It is irrefutable that the atomic bomb changed the trajectory of the 20th century, ending the Second World War and fuelling the Cold War between the Soviet Union and the United States, and their proxies. Today, in an era when energy security, food and water shortages and wide-spread dignity-deficits make as many headlines as guns and tanks, investing in AI and quantum technologies can help ensure supremacy. But at what price?

With the world’s superpowers on the cusp of a full-blown AI arms race, things could turn ugly very fast unless efforts are made to guarantee sustainable security for all. AI and quantum technologies could still become game-changing weapons, much like the nuclear bomb. There are already smart bombs, and hypersonic missiles that are faster than ever imagined. AI will immediately provide speed and power, enabling systems to move faster and do more complex activities more efficiently. In short, AI will progressively increase our capabilities, for good or evil. The ultimate challenge will be for countries at the forefront of AI advancement, often geopolitical rivals, to create international frameworks that encourage the transparent development of impressive innovations whose benefits can be shared widely, and responsibly.


There are plenty of eye-catching stories depicting the use of AI in ‘killer drones’ or missiles defence systems, and various world leaders have extolled the benefits of the technology in their militaries. But to focus on specific AI applications in the military is to miss the larger role that the technology is likely to play in global societies and potential conflicts. Military AI is at a relatively early stage of development, and while we can well imagine a future of robotic soldiers and other autonomous killing machines, this would be to ignore the unprecedented impact of AI and quantum technology on our future existence. In the near future, Artificial Intelligence will seep into every aspect of our societies and our economies, transforming our computational power, and with it the manufacturing speed, domestic output, energy usage, and all other processes and relations that define the economic success of a society. It is no wonder then that major global powers China, Russia, the U.S. and others, have poured billions into R&D labs, developing quantum technology and artificial intelligence, in the hope of unlocking a level of extreme-computational power that will catapult scientific, economic, military and technological advances into a new era.

In most developed countries, economic growth in the past half-century has been closely tied to advances in computational power, often from a relatively low base. The dash to quantum supremacy, whether by Google, IBM, or major entities in other nations, will propel states to domination of the global stage. This will come at a price for humanity and the collateral damage is likely to be equitable and dignified peace, security and prosperity. The unilateral and exclusive development of quantum supremacy will break every encryption of other states, and potentially dominate every aspect of world politics and critical infrastructure. It will encroach on our individual freedoms, cultural norms and identity. This won’t be sustainable and will trigger highly disruptive conflicts that could threaten the future of humanity as we know it. 

So how do we prevent this doomsday scenario? We should start by taking an honest look in the mirror. History shows that it is in the nature of states to first strive for survival before ultimately aiming for domination. An unchecked hegemon is rarely fair, just or peaceful, regardless of their proclaimed ideals or political ethos. That is why multipolarity and multilateralism are necessary prerequisites for securing a sustainable future for humanity. Parity or, near parity, is not in the DNA of a hegemon, because most states still govern their national interest through zero-sum paradigms without regard to transnational, global or planetary interests. This is understandable. But it is unworkable in our instantly connected and deeply interdependent world. Despite the initial horror emanating from the use of nuclear weapons against Japan in 1945, near-parity is what led nuclear states to enact treaties that governed the peaceful use of nuclear weapons. It also helped avoid, at least so far, scenarios of mutually assured destruction.

But we need not shackle ourselves to dated Cold War paradigms. In an anarchic, global system without a just, equitable or representative overarching authority, we should seek shelter in more sustainable approaches to global governance. Best embodied by “Multi-sum security” and “Symbiotic Realism” frameworks, these are defined by absolute gains, non-conflictual competition and win-win scenarios, thus guaranteeing sustainable security for all. Importantly, the future should not be taken hostage by any nation that unilaterally masters quantum supremacy. This would create a destructive and uncertain era that could lead to a dystopic stratification of peoples, cultures and states. Such a scenario may not start with a bang, but it could very well once again involve a scientist standing back, looking at their work and exclaiming ‘I guess it worked’.

Continue Reading

Science & Technology

Potential of Nanotechnology

Published

on

Emerging technologies such as AI, robotics and cyber have been in the limelight in defence and military domains since the 1950s; however, nanotechnology has not had a fair share of publicity. The global nanotechnology industry has a rapidly expanding market with an estimated worth of USD 2.4 billion in 2021 and is forecasted to reach USD 33.7 billion by 2030. This is due to the growing use of nanotechnology in various sectors such as urban farming, precision agriculture, medical, engineering, energy, security, defence, environment etc. While nanotechnology has proven tremendously beneficial for the civilian sector, it has valuable offerings for the military industry as well.

Nanotechnology is being used to develop nanoweapons which are miniaturised versions of weapons ranging from about 1-100 nanometres. A practical example of this is evident in the reduction of drone size from about 4 feet to the size of a honey bee. Such weapons would fit in the bags and pockets of the soldiers. Louis A. Del Monte, in his book ‘Nanoweapons: A Growing Threat to Humanity’, commented on the size of nanoweapons and termed them ‘nanobots’ with destructive potential.

The reduced size and enhanced spectrum of nanotechnology have allowed the development of highly sensitive nano-thermal and chemical sensors that can be of great value to military operatives. Nano-communication devices can be an effective tool for surveillance missions. For instance, nanotechnology has allowed video tracking and monitoring using 35x optical zoom nano multi-eye lens, real-time nano-radar and nano-eye cloud storage. Such technologies could be helpful for militaries to operate even in bad weather conditions and work around blind spots. Additionally, nanocomposite materials have good potential for the aerospace industry due to their lightweight and extended durability under high pressure and at high speed. Nanotechnology could also significantly impact space-based intelligence, communication, imaging and signal processing. In the longer run, most military technologies would be dependent on nanomaterials. Nanotechnology is also being evaluated for its use in unmanned platforms and robots. The applications of nanotechnology could also enable the development of  mini-nukes, weighing about five pounds and carrying an explosive power of 100 tonnes of TNT. Such an evolution in weapons can provide a competitive edge to the militaries around the world

To ensure a competitive edge, arms exporters are under tremendous pressure to outrun the others in winning this global nano-arms race. There is significant competition between the United States (US) and China in nanotechnology. By comparing the two countries’ progress in nanotechnology using documented and published research, it can be established that China is ahead of the US, with more than 42% of globally published research articles (about 85,700) on nanotechnology. However, Louis A. Del Monte, in his book titled ‘Genius Weapons’, claimed that the US enjoyed a ‘substantial lead’ in nanoweapons. He stated that this was a critical component of its ‘Third Offset Strategy.’ Conversely, he was also wary that the world would catch up with the US’ technological developments within a few years. Countries like India, Iran, South Korea, Germany, Japan, United Kingdom (UK) and Russia have shown great interest in nanotechnology.

India, in particular, is right behind the US and China in nanotechnology. Indian Defence Research and Development Organization (DRDO) has established several nanotechnology research institutes to pursue interdisciplinary research. Institutes such as the Centre for Nanoscience & Nanotechnology (UIEAST)  in 2005, Centres of Excellence in Nanoelectronics (CEN) since 2006, Centre for Nano Science and Engineering (CeNSE) in 2010, Nanoscience Centre for Optoelectronics and Energy Devices (Nano-COED), and several other research labs are working in various areas of nanotechnology. Furthermore, India is also the third-largest producer of research papers on nanotechnology, behind China and US. Additionally, employees of DRDO have published books on the subject, such as a book on ‘Nanotechnology for Defence Applications’, which discusses the potential of nanotechnology for the defence sector. The Indian defence forces have been eager to deploy nanotechnology on the battlefield and are working to propose a blueprint for its use in future warfare.

The Government of Pakistan founded the National Commission on Nano Science and Technology (NCNST) to assist universities and research centres in establishing nanoscience labs. There is tremendous potential for the development of nanotechnology in the private sector. Moreover, there are a few universities that have established research centres to conduct nanotechnology research. Despite these initiatives, the potential of nanotechnology in Pakistan has not been explored fully. Apart from lack of capital and human resource, Pakistan’s weak patent distribution is also one primary reason for this lag. The concentration of patents within the weapon-developing states limits the interested states such as Pakistan. To address this bottleneck, there is a need to fund the representation of Pakistani patents at international nanotechnology conferences and markets. This would assist in securing space for learning and sharing of knowledge as well as prowling commercial contracts, which could become a great source of revenue for Pakistan. Although less spoken of, nanotechnology is a fast-emerging province of knowledge and could significantly impact the future of warfare across the globe.

Continue Reading

Science & Technology

Expanding Information Technology: A boon or bane?

Published

on

The proponent and opponents of tech innovation argue about the blessings and harms of the expanded technological advancement in the global arena. From Hunter-gatherer societies to modern-day’s post-capitalist societies; the art which has indisputable progress for humanity is the art of technology and change. Technological change provides the economic base and societal revolution in the general. Regardless of unprecedented changes in facets of communications its expansion could turn into cyber warfare, data privacy rights, political malice, and a threat to democracy.

Discussing the inverse logic in the first place; there is not an iota of doubt that expanded information technology has revolutionized the healthcare industry across the globe. The people from Nigeria can connect to New York for medical consultancy with little effort. It has changed the paradigm of the health sector with potential phase. Secondly, in the Political arena, the concept of e-governance evolved. Automation and information technology can be used to collect records and data statistics to make new and efficient policies for the public by using evidence-based policies. Regardless of robust socio-economic and socio-political changes in the structure of society information technology posited a major setback to the overall growth of society.

The threat of individual liberty due to mass surveillance is circulated everywhere with the dawn of excessive information technology. People have lost the true independence and liberty to choose and to decide about themselves. Google and media giants have placed the autonomy. The cannibalization of jobs is also a melting point with the advent of information technology. Humans’ cognitive skills are outperformed by artificial intelligence. One of the most lethal problems which are caused by expanded information technology is inequality; the flow of information technology led revenue from the south towards Silicon Valley. All the data of the world is owned by a minutus majority which is problematic. A small data elite can capture the entire globe within clicks. The autocratic hold of data by companies can put a major threat to the independence and rational decision-making of individual as well as collective states. The prior economic inequality was less potent than the subsequent data inequalities between North and South.

Democracy which is based on the trust factor is plagued by cyber-attacks and disinformation. Public opinion is engineered in the firms where the analysis of public behavior through different apps like Candy Crush can be used to mold and shape their opinions of the favorite leader. The democracy which stands over the general will is compromised by manufactured consent. Boot camps and lobbying big data tailor-made the wishes and preferences to make political campaigns for voting and triumphing the preferred members. The manipulated biases are justified through echo chambering by advertising all the biases and prejudices of humans to confirm their biases for political agendas. Democracy replaced by populism due to expanded information technology. The other side of democracy is based on communication. It was the improved communication in the society that established the democratic governances in different parts of the world, but with time, the malfunctioning communication due to a matrix of misinformation can halt the global growth and sustainability of democracy.

Yuval Noah Hariri argued that the biggest threat to the working class is not exploitation but irrelevance in the 21st Century. In the past technology couldn’t replace human intellectual abilities but artificial intelligence can overshadow the cognitive skills of human beings. These cognitive skills were peculiar human traits that empower them to main positions in companies and firms but the modern expanded technology has outnumbered this peculiar trait. Now robots and automated machines can do a good job of hiring and recruiting people than humans. Due to this reason, humans have become irrelevant with the cannibalization of jobs.

Every decision is owned by algorithms which are moral decadence. Google owns preferences and likes and dislikes mechanisms for humans. It is a big moral dilemma that expanded technology posed over human authority and autonomy. The unique decision-making of humans is replaced by tech-based decision powers. The margin of independent thinking has declined in the 21st Century. It is argued by scholars that the ultimate goal of Google is to outsource every decision of humans to Google.

Due to expanded technology, multi-national companies and firms are becoming stronger and more sovereign than entire states. For example, the Apple Market Value in 2021 was $2274.34 billion and Microsoft’s net worth was $1988.67 billion quart triple the entire GDP of any nation in Asia. The digital elites have become super humans which is a global threat to governance in third-world countries. The owner of big firms can sabotage and challenge the governance of any small country for the collective goodwill of their companies. State sovereignty has been diluted and replaced due to the more powerful Leviathan traits of big data firms.

The possible remedies to expanded technology are many. The democratization of data is a way forward in which the concentration and autocratic hold of all the data chains can be diluted into different units by breaking up Big Data like Google and Facebook. For example, Rockefeller Oil Company was diluted into 34 companies when it became a giant holder of all the oil supply in Europe. In the same vein, Big Data can be distributed into different units for democratization purposes. Secondly; strict government regulations and oversight mechanisms can be used to control Artificial Intelligence research. The expansion of IT should be controlled and ethical otherwise it can be a potential threat to humanity.

Modern information technology has changed human lives in general but the flip side of negative outcomes can’t be overlooked. The ethics and innovation should be balanced otherwise the corporates will monopolize all data and algorithms for ulterior motives. Technological advances present significant opportunities for progress and advancement of human beings from nuclear deterrence to communication. But the long-lasting negative consequences are many which proved modern technology a bane rather than a boon. It is high time across the globe to re-consider the ethical side and controlled expansion of information technology before it becomes an uncontrollable fact for human beings to survive and sustain in the 21st Century. The balance between expanded technology and human growth should be discerned in contemporary times.

Continue Reading

Publications

Latest

Trending