Connect with us

Energy

Nuclear Energy is not Dead! The Drivers Underpinning the Ongoing Nuclear Renaissance

Published

on

As a result of the Chernobyl nuclear catastrophe in the Soviet Union of 1986 and Fukushima Daiichi nuclear disaster of 2011, public opinion remains reluctant to endorse nuclear technology in both the civilian and military sectors. Nevertheless, such energy remains the most ecological and realistic method of production to curb global warming, which explains the commitment of environmental parties, such as the Swedish Miljöpartiet de gröna, to nuclear power until renewable energies have more potential for electricity generation.

The debated civilian nuclear power supplied 2,586 terawatt hours (TWh) of electricity in 2021, equivalent to about 10 per cent of global production, and represented only the second-largest low-carbon power source after hydroelectricity. With over 442 civilian fission reactors in the world (392 gigawatt), combined to 53 nuclear power reactors under construction (60 GW) and 98 reactors planned (103 GW), nuclear energy remains of interest, especially in the emerging economies.

While some argue nuclear production is a dangerous path, the main challenge, however, remains the sustainability of countries for maintaining and upgrading reactors.

At the time of the collapse of the USSR, many post-Soviet countries had to reduce or even shut down their nuclear capabilities due to a lack of economic resources and technical skills to maintain the production facilities. Financial issues also help explain the wish to transfer nuclear weapons to (post-Soviet) Russia, with Moscow having sufficient logistical means to ensure the maintenance.

In the end, the main concern when building a nuclear power plant or developing a nuclear arsenal is less about its completion than about its long-run sustainability. Indeed, nothing suggests that a country will remain politically and economically stable in the upcoming years, decades or even centuries.

Let us take the example of France and the United Kingdom, two countries which at the time of the development of their nuclear arsenals (1952 and 1960 respectively) and their civilian power plants were global powers able to counterweight Washington and Moscow (e.g. France withdrawal from NATO command structures in 1966).

Nowadays, these two countries—France and the United Kingdom—do not have the same maritime or land surface, and their international presence and financial weight have been greatly reduced, which for the time being has not led to problems related to the maintenance of nuclear power plants, but could one day occur in case of an unexpected crisis. In the same manner, a country could—due to political change, resurgence of radicalism or institutional crisis—turn into a hostile force while keeping its nuclear military capabilities, leading to greater instability on the international scene.

Leaving the military aspects aside, nuclear power is fundamental to the efforts to tackle global warming, at least for the time being, and this energy appears to be the gateway to space colonization. While there is still a lot of research to be done in this area, it will undoubtedly enable the travel to the Moon, Mars and exoplanets as well as the production of the much-needed electricity for colonization (e.g. 3D printing systems to build large-scale facilities).

Nuclear-powered robots are commonplace when it comes to space conquest, and a number of spacecraft—Cassini-Huygens, Curiosity (rover), Galileo, Kosmos 954, Lincoln Experimental Satellite, New Horizons, Viking 1 and 2, Voyager 1 and 2—already rely on this type of energy to operate.

Nuclear energy thus represents an opportunity as well as a responsibility, as shown by the Finnish case with the Onkalo deep geological repository, based on the KBS-3 technology for disposal of high-level radioactive waste developed by the Svensk Kärnbränslehantering AB (SKB).

Considering the emergency related to global warming and the increasing tensions in international relations (e.g. growing U.S.-China competition in the Pacific and in space), we will have to learn to cope with civil and military nuclear power: as a matter of pragmatism until we have a better option, if one exists.

Therefore, this article explores solutions for the future by addressing the example of French management in this area, a country with a production of 379.5 TWh (70.6% of the national electricity), the highest percentage in the world.

The Russian floating nuclear power station may also provide an adequate answer for countries that do not have the financial and technological resources to build their own nuclear power stations, providing a solution without forcing governments in least developed countries into significant commitments. The Rosatom project deserves to be mentioned because it might inspire other states, such as the United Kingdom, the United States, France and China, to develop their own floating nuclear power stations, which might lead to the possibility of seeing nuclear-powered container ships appearing, avoiding over-consumption of fossil fuel energy in the supply chain.

In general, nuclear power also seems necessary as the banking sector transitions from traditional banking to blockchain and will consume more energy in the future, which will require an increase in the low environmental impact energy production.

Finally, nuclear power is necessary to ensure the success of the colonization of space, thus preventing humanity from relying on a single solar system, as the chances of survival on two planets are considerably greater than on one.

French nuclear paradise: France’s successful management of its nuclear assets

As mentioned above, France has a nuclear power output of 537.7 TWh providing 70.6% of the total electricity, the highest percentage in the world. This is due to several historical factors and motives, the main one being De Gaulle’s policy in the 1960s to ensure that France would remain a great power capable of competing with the United States and the Soviet Union.

Although it may seem difficult to imagine nowadays, in the 1950-1960s France was an Empire covering several continents (e.g. Indochina and Algeria) and as such was by demography, territorial holdings and GDP capable of representing an alternative to the two superpowers. After the collapse of the French Empire in the second half of the 20th century, France became a “middle” power even if it remains the largest maritime territory in the world and possesses land in Africa, Latin America (French Guiana), and in distant territories such as French Polynesia.

De Gaulle’s desire to develop nuclear research, albeit for military purposes, led to the parallel development of French civil nuclear energy, which was necessary to produce large quantities of radioactive components for the future nuclear arsenal. While France has not been able to match the United States and remains behind Russia and China today, the civilian aspects have succeeded in making the country a nuclear paradise with clean and affordable energy.

Largely owned by the French government (85% of the company’s shares), Électricité de France (EDF) is the country’s main electricity generation and distribution company in charge of its nuclear power plants. While looking at the French management, EDF remains heavily indebted. Its profitability has suffered from the recession that started in 2008 and made a profit of €3.9 billion in 2009, which fell to €1.02 billion in 2010, with provisions amounting to €2.9 billion. Overall, the main problem in France remains the government, and as long as the state is in charge of nuclear production (EDF), the company does not need to strongly increase its efficiency to survive.

As such, an interesting option for the future of French nuclear production would be privatization, as large companies would increase nuclear capacity and optimize production costs while reducing the number of people in the administration. Public opinion and the French government are opposed to this idea, as it would give the private sector more flexibility and could lead to safety concerns, while the reality is probably the opposite, as government management is the main problem and the reason why the services are less efficient than the private sector, as can be seen in almost every aspect in which public administration is involved (e.g. NASA as opposed to SpaceX).

The French administration could privatize nuclear power generation, while setting laws and ensuring compliance by the private sector, which would mean that the French government would guarantee the safety of production standards, while nuclear power providers would optimize production efficiency, as has already been done with airlines and telecommunications.

Although France has successfully managed civil nuclear power at the national level, the lack of privatization has led to missed business opportunities in the nuclear field. We might have expected France to create more nuclear facilities in French Guyana to sell electricity to the neighboring Latin American nations, thereby increasing profits in a continent that demands more. The same is true in Europe, as with German nuclear facilities closed, France could have increased domestic production to become the nuclear powerhouse of Europe, a fruitful business given French expertise in this area and the high demand for electricity in Germany, Italy, Spain, Belgium and Switzerland, to name a few.

In this sense, Russia has been able to innovate more quickly and is now offering the floating nuclear power plant, which has enormous potential in the developing countries, with a prospect to emerge as a world leader in this growing sector.

The bright future of Russian floating nuclear power plants

Floating nuclear power plants are vessels designed by Rosatom—the Russian state-owned nuclear energy company—and are self-contained, low-capacity floating nuclear power plants able to move around the world. Rosatom plans to mass-produce these plants in shipbuilding facilities to tow them to ports near places where electricity is in great demand, which can increase access to nuclear energy in some parts of the world.

The concept dates back to the MH-1A in the United States, which was built in the 1960s in the hull of a World War II Liberty Ship; however, the Rosatom project is the first floating nuclear power plant for mass production.

When it comes to the technology itself, a large part remains classified, though we know that floating plants must be refueled every three years, nevertheless saving up to 200,000 tons of coal and 100,000 tons of oil per year. The reactors are expected to have a 40-year life span and are designed around the reactor itself, successive physical protection and containment systems, active and passive self-activating safety systems, automatic self-diagnosis systems, reliable diagnostics of the condition of equipment and systems, and planned accident control methods. In addition, the on-board safety systems operate independently of the plant’s power supply.

According to Rosatom, 15 countries, including China, Indonesia, Malaysia, Algeria, Sudan, Namibia, Cape Verde and Argentina, have expressed interest in leasing such a device. It is estimated that 75% of the world’s population lives within 100 miles of a port city, the fact turning Rosatom’s device into a typical example of Blue Ocean strategy in the nuclear energy sector.

The Russian floating nuclear power plant is an attractive alternative for developing countries, as it offers the technical expertise of Russian engineers, while it does not require a state to provide the uranium and can only be used when needed.

African and Latin American countries will need more electricity in the near future, especially when it comes to transitioning from central banks and gasoline-powered vehicles to blockchain-based digital currencies and electric cars. As such, the Russian project is one of the first of its kind that should provide a temporary solution in emerging countries. Market liberalization in this area is to be expected, with competition from China, the United States, and perhaps countries such as France, depending on how Rosatom manages to sell this business model versus its competitors.

Space conquest and safety of humanity can almost only be achieved through nuclear power

While it can be perceived as a threat on Earth, nuclear energy is essential in space, and nuclear decay processes are used in niche applications such as radioisotope thermoelectric generators in space probes like Voyager 2.

Moreover, the production of electricity from fusion energy remains the focus of international research. Because nuclear power systems can have a lower mass than solar cells of equivalent power, this allows for more compact spacecraft that are easier to steer and direct in space. In the case of manned spaceflight, nuclear power concepts that can power both life support and propulsion systems can reduce both the cost and duration of flights.

NASA in the United-States

In 2001, the safe affordable fission engine was under development, with a tested 30kW nuclear heat source to lead to the development of a 400kW thermal reactor with Brayton cycle gas turbines to generate electrical power. Waste heat rejection was to be provided by low mass heat pipe technology. Safety was to be ensured by a robust design.

A concert example is the project Prometheus, a NASA study of nuclear-powered spacecraft from the early 2000s, while Kilopower—preliminary concepts and technologies that could be used for an affordable fission nuclear power system to enable long-duration stays on planetary surfaces—is NASA’s latest reactor development programme.

American interests in space technology are also connected with classified project regarding the 6th generation fighter jet, and it is possible the Northrop TR-3 Black Manta (temporary name) will require more energy to sustain the consumption of energy for non-gravitational field on the edges and the middle of the triangle.

In Russia, TEM (nuclear propulsion)

The TEM project started in 2009 with the aim of powering a Mars engine, with Russia declaring to have completed the first tests of the water droplet radiator system in March 2016.

On 19 March 2021, the M.V. Lomonosov Research Centre in Keldysh plans to conduct flight tests of ion engines in 2025-2030. According to the press service, the Keldysh Centre has already created products with a capacity of 200W to 35 kW. At the moment, the characteristics of their resources are confirmed and the creation of a 100kW engine is in the preliminary stages.

While details of declassified nuclear space applications are sometimes available in the United States and Russia, China has been more secretive about the current state of knowledge in this area. In addition to space conquest, nuclear research can be applied to hypersonic missiles, as nuclear technology applied to space remains the only solution for space exploration until another propulsion source of equivalent power is developed.

Overall, a nuclear renaissance would be much appreciated, not only to secure the future of our planet by protecting the environment but also to ensure humanity will survive around our universe, with the conquest of the Moon, Mars and exoplanets relying on nuclear-powered spacecraft.

While nuclear power has suffered from Chernobyl and Fukushima, even in some countries where it has shown positive results, such as France, ambitious projects like the Russian floating nuclear power plant have proved to be a valuable solution for advanced countries to provide clean and affordable energy to the rest of the world.

Future disasters are a possibility that cannot be ruled out, and while they are a tragedy, we must weigh the invisible costs of other means of electricity generation on the environment (e.g. coal), bearing in mind that civil nuclear power plants have improved and will hopefully continue to do so with nuclear fusion.

In the long term, this does not mean that renewables should not be improved, but nuclear will nevertheless remain complementary, until and if renewables are able to take over on Earth, with the nuclear mainly used for space purposes thereafter.

From our partner RIAC

Ph.D. in History of Europe & International Relations, Sorbonne University - INSEAD Business School, (Geo)political scientist working on Sino-European/Russian relations and soft power in the 21st century

Continue Reading
Comments

Energy

Oil and the new world order: China, Iran and Eurasia

Published

on

The world oil market will undergo a fundamental change in the future. Choosing petrodollars or oil wars is no longer a question that can be answered. With the Strategic Agreement on the Comprehensive Economic and Security Partnership between China and Iran officially signed by the Foreign Ministers of both countries in Tehran on March 27, 2021, the petrodollar theorem is broken and the empire built by the US dollar is cracked.

This is because the petrodollar has not brought substantial economic development to the oil-producing countries in the Middle East during over half a century of linkage to the US dollar.

The Middle East countries generally have not their own industrial systems. The national economies are heavily dependent on oil exports and imports of cereals and industrial products. The national finances are driven by the US dollar and the financial system that follows it.

If the Middle East countries wanted to escape the control of the dollar, they should face the threat of war from the United States and its allies – things we have seen over and over again. Just think of Saddam Hussein being supported when he was fighting Iran and later being Public Enemy No. 1 when he started trading oil in euros.

The West has always wanted the Middle East to be an oil ‘sacred cow’ and has not enabled it to develop its own modern industrial system: the lack of progress in the Middle East was intended as long-term blackmail.

In the Western system of civilisation based on exchange of views and competition, the West is concerned that Iran and the entire Middle East may once again restore the former glory and hegemony of the Persian, Arab and Ottoman empires.

China is facing the exploitation of the global oil market and the threat of its supply disruption. Relying on industrial, financial, and military strength, Europe and the United States control the oil production capital, trade markets, dollar settlements, and global waterways that make up the entire petrodollar world order, differentiating China and the Middle East and dividing the world on the basis of the well-known considerations. You either choose the dollar or you choose war – and the dollar has long been suffering.

Just as in ancient times nomadic tribes blocked the Silk Road and monopolised trade between East and West, Europe and the United States are holding back and halting cooperation and development of the whole of Asia and the rest of the planet. Centuries ago, it was a prairie cavalry, bows, arrows and scimitars: today it is a navy ship and a financial system denominated in dollars.

Therefore, China and Iran, as well as the entire Middle East, are currently looking for ways to avoid middlemen and intermediaries and make the difference. If there is another strong power that can provide military security and at the same time offer sufficient funds and industrial products, the whole Middle East oil can be freed from the dominance of the dollar and can trade directly to meet demand, and even introduce new modern industrial systems.

Keeping oil away from the US dollar and wars and using oil for cooperation, mutual assistance and common development is the inner voice of the entire Middle East and developing countries: a power that together cannot be ignored in the world.

The former Soviet Union had hoped to use that power and strength to improve its system. However, it overemphasised its own geostrategic and paracolonial interests – turning itself into a social-imperialist superpower competing with the White House. Moreover, the USSR lacked a cooperative and shared mechanism to strengthen its alliances, and eventually its own cronies began to rebel as early as the 1960s.

More importantly – although the Soviet Union at the time could provide military security guarantees for allied countries – it was difficult for it to provide economic guarantees and markets, although the Soviet Union itself was a major oil exporter. The natural competitive relationship between the Soviet Union and the Middle East, as well as the Soviet Union’s weak industrial capacity, eventually led to the disintegration of the whole system, starting with the defection of Sadat’s Egypt in 1972. Hence the world reverted to the unipolarised dollar governance once the Soviet katekon collapsed nineteen years later.

With the development and rise of its economy, however, now China has also begun to enter the world scene and needs to establish its own new world order, after being treated as a trading post by Britain in the 19th century, later divided into zones of influence by the West and Japan, and then quarantined by the United States after the Second World War.

Unlike the US and Soviet world order, China’s proposal is not a paracolonial project based on its own national interests, nor is it an old-fashioned “African globalisation” plan based on multinationals, and it is certainly not an ideological export.

For years, there has been talk of Socialism with Chinese characteristics and certainly not of attempts to impose China’s Marxism on the rest of the world, as was the case with Russia. China, instead, wishes to have a new international economic order characterised by cooperation, mutual assistance and common development.

Unlike the Western civilisation based on rivalry and competition, the Eastern civilisation, which pays more attention to harmony without differences and to coordinated development, is trying to establish a new world economic order with a completely different model from those that wrote history in blood.

Reverting to the previous treaty, between the US dollar and the war, China has offered Iran and even the world a third choice. China seems increasingly willing to exist as a service provider. This seems to be more useful for China, first of all to solve its own problems and not to get involved in endless international disputes.

It can thus be more accepted by all countries around the world and unite more States to break the joint encirclement of the “democratic” and liberal imperialism of Europe and the United States.

Consequently, China and Iran – whose origins date back almost to the same period – met at a critical moment in history. According to the Strategic Agreement on Comprehensive Economic and Security Partnership between China and Iran, China will invest up to 400 billion dollars in dozens of oil fields in Iran over the next 25 years, as well as in banking, telecommunications, ports, railways, healthcare, 5G networks, GPS, etc.

China will help Iran build the entire modern industrial system. At the same time, it will receive a heavily discounted and long-term stable supply of Iranian oil. The Sino-Iranian partnership will lay the foundations for a proposed new world order, with great respect for Eastern values, not based on some failed, decadent and increasingly radicalising principles.

Faced with the value restraint and the pressure of sanctions from the United States and Europe, China is seeking to unite the European third Rome, Indo-European Iran, the second Rome and the five Central Asian countries to create a powerful geoeconomic counterpart in the hinterland of Eurasia.

Continue Reading

Energy

The stages and choices of energy production from hydrogen

Published

on

There are three main ways to use hydrogen energy:

1) internal combustion;

2) conversion to electricity using a fuel cell;

3) nuclear fusion.

The basic principle of a hydrogen internal combustion engine is the same as that of a gasoline or diesel internal combustion engine. The hydrogen internal combustion engine is a slightly modified version of the traditional gasoline internal combustion engine. Hydrogen internal combustion burns hydrogen directly without using other fuels or producing exhaust water vapour.

Hydrogen internal combustion engines do not require any expensive special environment or catalysts to fully do the job – hence there are no problems of excessive costs. Many successfully developed hydrogen internal combustion engines are hybrid, meaning they can use liquid hydrogen or gasoline as fuel.

The hydrogen internal combustion engine thus becomes a good transition product. For example, if you cannot reach your destination after refuelling, but you find a hydrogen refuelling station, you can use hydrogen as fuel. Or you can use liquid hydrogen first and then a regular refuelling station. Therefore, people will not be afraid of using hydrogen-powered vehicles when hydrogen refuelling stations are not yet widespread.

The hydrogen internal combustion engine has a small ignition energy; it is easy to achieve combustion – hence better fuel saving can be achieved under wider working conditions.

The application of hydrogen energy is mainly achieved through fuel cells. The safest and most efficient way to use it is to convert hydrogen energy into electricity through such cells.

The basic principle of hydrogen fuel cell power generation is the reverse reaction of electrolysis of water, hydrogen and oxygen supplied to the cathode and anode, respectively. The hydrogen spreading – after the electrolyte reaction – makes the emitted electrons reach the anode through the cathode by means of an external load.

The main difference between the hydrogen fuel cell and the ordinary battery is that the latter is an energy storage device that stores electrical energy and releases it when needed, while the hydrogen fuel cell is strictly a power generation device, like a power plant.

The same as an electrochemical power generation device that directly converts chemical energy into electrical energy. The use of hydrogen fuel cell to generate electricity, directly converts the combustion chemical energy into electrical energy without combustion.

The energy conversion rate can reach 60% to 80% and has a low pollution rate. The device can be large or small, and it is very flexible. Basically, hydrogen combustion batteries work differently from internal combustion engines: hydrogen combustion batteries generate electricity through chemical reactions to propel cars, while internal combustion engines use heat to drive cars.

Because the fuel cell vehicle does not entail combustion in the process, there is no mechanical loss or corrosion. The electricity generated by the hydrogen combustion battery can be used directly to drive the four wheels of the vehicle, thus leaving out the mechanical transmission device.

The countries that are developing research are aware that the hydrogen combustion engine battery will put an end to pollution. Technology research and development have already successfully produced hydrogen cell vehicles: the cutting-edge car-prucing industries include GM, Ford, Toyota, Mercedes-Benz, BMW and other major international companies.

In the case of nuclear fusion, the combination of hydrogen nuclei (deuterium and tritium) into heavier nuclei (helium) releases huge amounts of energy.

Thermonuclear reactions, or radical changes in atomic nuclei, are currently very promising new energy sources. The hydrogen nuclei involved in the nuclear reaction, such as hydrogen, deuterium, fluorine, lithium, iridium (obtained particularly from meteorites fallen on our planet), etc., obtain the necessary kinetic energy from thermal motion and cause the fusion reaction.

The thermonuclear reaction itself behind the hydrogen bomb explosion, which can produce a large amount of heat in an instant, cannot yet be used for peaceful purposes. Under specific conditions, however, the thermonuclear reaction can achieve a controlled thermonuclear reaction. This is an important aspect for experimental research. The controlled thermonuclear reaction is based on the fusion reactor. Once a fusion reactor is successful, it can provide mankind with the cleanest and most inexhaustible source of energy.

The feasibility of a larger controlled nuclear fusion reactor is tokamak. Tokamak is a toroidal-shaped device that uses a powerful magnetic field to confine plasma. Tokamak is one of several types of magnetic confinement devices developed to produce controlled thermonuclear fusion energy. As of 2021, it is the leading candidate for a fusion reactor.

The name tokamak comes from Russian (toroidal’naja kamera s magnitnymi katuškami: toroidal chamber with magnetic coils). Its magnetic configuration is the result of research conducted in 1950 by Soviet scientists Andrei Dmitrievič Sakharov (1921-1989) and Igor’ Evgen’evič Tamm (1895-1971), although the name dates back more precisely to 1957.

At the centre of tokamak there is a ring-shaped vacuum chamber with coils wound outside. When energized, a huge spiral magnetic field is generated inside the tokamak, which heats the plasma inside to a very high temperature, which achieves the purpose of nuclear fusion.

Energy, resources and environmental problems urgently need hydrogen energy to solve the environmental crisis, but the preparation of hydrogen energy is not yet mature, and most of the research on hydrogen storage materials is still in the exploratory laboratory stage. Hydrogen energy production should also focus on the “biological” production of hydrogen.

Other methods of hydrogen production are unsustainable and do not meet scientific development requirements. Within biological production, microbial production requires an organic combination of genetic engineering and chemical engineering so that existing technology can be fully used to develop hydrogen-producing organisms that meet requirements as soon as possible. Hydrogen production from biomass requires continuous improvement and a vigorous promotion of technology. It is a difficult process.

Hydrogen storage focused on the discovery of new aspects of materials or their preparation is not yet at large-scale industrial level. Considering different hydrogen storage mechanisms, and the material to be used, also needs further study.

Furthermore, each hydrogen storage material has its own advantages and disadvantages, and most storage material properties have the characteristics that relate to adductivity and properties of a single, more commonly known material.

It is therefore believed that efforts should be focused on the development of a composite hydrogen storage material, which integrates the storage advantages of multiple individual materials, along the lines of greater future efforts.

Continue Reading

Energy

The advantages of hydrogen and Israel’s warnings

Published

on

Hydrogen is the most common element in nature. It is estimated to make up 75% of the mass of the universe. Except for that contained in air, it is primarily stored in water in the form of a compound, and water is the most widely distributed substance on earth.

Hydrogen has the best thermal conductivity of all gases – i.e. ten times higher than most of them – and it is therefore an excellent heat transfer carrier in the energy industry.

Hydrogen has good combustion performance, rapid ignition, and has a wide fuel range when mixed with air. It has a high ignition point and rapid combustion rate.

Except for nuclear fuels, the calorific value of hydrogen is the highest among all fossil and chemical fuels, as well as biofuels, reaching 142.35 kJ/kg. The calorie per kilogram of hydrogen burned is about three times that of gasoline and 3.9 times that of alcohol, as well as 4.5 times that of coke.

Hydrogen has the lightest weight of all elements. It can appear as gas, liquid, or solid metal hydride, which can adapt to different storage and transport needs and to various application environments.

Burning hydrogen is cleaner than other fuels –  besides generating small amounts of water – and does not produce hydrogen azide as carbon monoxide, carbon dioxide (harmful to the environment), hydrocarbons, lead compounds and dust particles, etc. A small amount of hydrogen nitride will not pollute the environment after proper treatment, and the water produced by combustion can continue to produce hydrogen and be reused repeatedly.

Extensive use practices show that hydrogen has a record of safe use. There were 145 hydrogen-related accidents in the United States between 1967 and 1977, all of which occurred in petroleum refining, the chlor-alkali industry, or nuclear power plants, and did not really involve energy applications.

Experience in the use of hydrogen shows that common hydrogen accidents can be summarized as follows: undetected leaks; safety valve failure; emptying system failure; broken pipes, tubes or containers; property damage; poor replacement; air or oxygen and other impurities left in the system; too high hydrogen discharge rate; possible damage of pipe and tube joints or bellows; accidents or tipping possibly occurring during the hydrogen transmission process.

These accidents require two additional conditions to cause a fire: one is the source of the fire and the other is the fact that the mixture of hydrogen and air or oxygen must be within the limits of the possibility of fires or violent earthquakes in the local area.

Under these two conditions, an accident cannot be caused if proper safety measures are established. In fact, with rigorous management and careful implementation of operating procedures, most accidents do not theoretically occur.

The development of hydrogen energy is triggering a profound energy revolution and could become the main source of energy in the 21st century.

The United States, Europe, Japan, and other developed countries have formulated long-term hydrogen energy development strategies from the perspective of national sustainable development and security strategies.

Israel, however, makes warning and calls for caution.

While the use of hydrogen allows for the widespread penetration of renewable energy, particularly solar and wind energy – which, due to storage difficulties, are less available than demand – Israeli experts say that, despite its many advantages, there are also disadvantages and barriers to integrating green hydrogen into industry, including high production costs and high upfront investment in infrastructure.

According to the Samuel Neaman Institute’s Energy Forum report (April 11, 2021; authors Professors Gershon Grossman and Naama Shapira), Israel is 7-10 years behind the world in producing energy from clean hydrogen.

Prof. Gideon Friedman, actingchief scientist and Director of Research and Development at the Ministry of Energy, explains why: “Israel has a small industry that is responsible for only 10% of greenhouse gas emissions – unlike the world where they are usually 20% – and therefore the problems of emissions in industry are a little less acute in the country.”

At a forum held prior to the report’s presentation, senior officials and energy experts highlighted the problematic nature of integrating clean hydrogen into industry in Israel.

Dr. Yossi Shavit, Head of the cyber unit in industry at the Ministry of Environmental Protection, outlined the risks inherent in hydrogen production, maintenance and transportation, including the fact that it is a colourless and odourless gas that makes it difficult to detect a leak. According to Dr. Shavit, hydrogen is a hazardous substance that has even been defined as such in a new regulation on cyber issues published in 2020.

Dr. Shlomo Wald, former chief scientist at the Ministry of Infrastructure, argued that in the future hydrogen would be used mainly for transportation, along with electricity.

Prof. Lior Elbaz of Bar-Ilan University said that one of the most important things is the lack of laws: “There is no specific regulation for hydrogen in Israel, but it is considered a dangerous substance. In order for hydrogen to be used for storage and transportation, there needs to be a serious set of laws that constitute a bottleneck in our learning curve.” “Israel has something to offer in innovation in the field, but government support will still be needed in this regard – as done in all countries – and approximately a trillion dollars in the field of hydrogen is expected to be invested in the next decade.”

Although the discussion was mainly about Israel’s delay in integrating clean hydrogen into the industry, it has emerged that Sonol (Israel’s fuel supplier ranking third in the country’s gas station chain) is leading a project, together with the Ministry of Transport, to establish Israel’s first hydrogen refuelling station. “We believe there will be hydrogen transportation in Israel for trucks and buses,” said Dr. Amichai Baram, Vice President of operations at Sonol. “Hydrogen-powered vehicles for the country – albeit not really cheap in the initial phase – and regulations promoted in the field, both for gas stations and vehicles.”

Renewables account for only 6% of Israel’s energy sources and, according to the latest plans published by the Ministry of Energy and adopted by the government, the target for 2030 is 30%.

This is an ambitious goal compared to reality, and also far from the goal of the rest of the countries in the world that aim at energy reset by 2050.

The authors of the aforementioned report emphasize that fully using the clean hydrogen potential is key to achieving a higher growth target for Israel.

According to recommendations, the State should critically examine the issue in accordance with Israel’s unique conditions and formulate a strategy for the optimal integration of hydrogen into the energy economy.

Furthermore, it must support implementation, both through appropriate regulations and through the promotion of cooperation with other countries and global companies, as well as through investment in infrastructure, and in research and development, industry and in collaboration with the academic world.

There are countries in Europe or the Middle East that have already started green energy production projects, and finally it was recommended to work to develop Israeli innovations in the field, in collaboration with the Innovation Authority and the Ministry of Energy.

Continue Reading

Publications

Latest

Trending