Connect with us

Science & Technology

Elon Musk’s “City-State” on Mars: An International Problem

Published

on

The private space industry is booming with companies like SpaceX, Blue Origin, and Virgin Galactic all designing spacecraft to transport people into the cosmos. Elon Musk is the closest to launching a space faring program, with near-term plans to send humans to the Moon and Mars. In October 2020, Musk, a genius billionaire, quietly declared the independence of a new country on Mars. Musk claimed he will have humans on Mars to start building the new “free” “city-state” by 2026. He also declared the new “country” will not “recognize the laws of Earth.” 

All three tech billionaires currently face few obstacles to implement their plans. However, one obstacle for all of them will be navigating international law. Musk already appears to be exploiting many soft spots in international politics, which are no competitor to a ruthless tech titan. Musk’s plans are an urgent international problem that requires a new multi-national solution.

Musk’s Declarations About Mars

For decades, Musk has spoken about his desire for humans to become “interplanetary.”  Musk founded SpaceX in 2001 with his PayPal fortune and the goal to put humans on Mars.  After Russia rejected his offer of $20 million to buy several intercontinental ballistic missiles, Musk began manufacturing and launching his own rockets. Musk plans to start sending humans to Mars by 2026 and then shuttling thousands of people between Earth and Mars before 2030. Muskplans to create a city on Mars by 2050 and then a completely self-sufficient city of a million people on Mars by the end of the century.

Musk is an eccentric guy and not everything he says should be taken seriously. However, it is clear Musk is serious about bringing humans to Mars. In 2017 and 2018, he published detailed plans for settling Mars.  In October 2020, Musk published a terms of service agreement for beta customers of his new Starlink wireless internet service. The agreement included a very specific note about the governance of Mars. In Starlink’s “Pre-Order Agreement,” under “Governing Law,” the contract states,

“For Services provided on Mars, or in transit to Mars via Starship or other spacecraft, the parties recognize Mars as a free planet and that no Earth-based government has authority or sovereignty over Martian activities. Accordingly, Disputes will be settled through self-governing principles, established in good faith, at the time of Martian settlement.”

Further, in December 2020Musk began selling off all of his possessions to help fund the city on Mars. A SpaceX attorney even stated he is actively drafting a Martian constitution. There is every reason to think Musk will follow through.

Common Heritage of Mankind

Ultimately, a city on Mars would simply be an extension of Earth, though separated by a different kind of sea. National jurisdiction and sovereignty are always limited in several areas: outer space, international airspace, international waters, international sea beds. All these areas are considered the “common heritage of mankind” (CHM). These are areas where activities are expected to be carried out in the collective interests of all states and benefits are expected to be shared equitably. Space exploration is a priority for many nations, as well as for the scientific community. There is zealous global interest in space travel, studying celestial objects, and even operating scientific laboratories in space and on planets.

The 1967 Outer Space Treaty (OST) explained in Article II that outer space is not “subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means.” This provision is referred to as the non-appropriation principle. The policy rationale is to dis-incentivize states from “reenacting terrestrial land rushes” and taking boundary disputes into space. Scholars argue that the outer space non-appropriation principle has passed into customary international law.

In this sense, Mars is equivalent to the high seas. According to the United Nations Law of the Sea Convention, “international waters” belong to everyone and no one. There is a history of rogue actors declaring “new nations” in domestic and international waters; a phenomenon often referred to as “seasteading.” None of these “nations” have ever been recognized as legitimate. The U.K. rejected a British man’s declaration that a WWII platform was now the “Principality of Sealand.” Italy rejected the “Republic of Rose Island” off its coast and eventually destroyed the “nation” with dynamite. U.S. courts have rejected seasteading as well, deciding that artificial islands on the coast of Florida were under U.S. jurisdiction. 

Private Property Rights in Space

International law is clear about private property rights in space – there are none. Private property rights can only be created by a state on the property over which the state has sovereignty. The 110 countries that have ratified the OST are not allowed to create private property rights. The OST is ratified by all states with space programs and reflects the consensus of resolutions of the U.N. General Assembly on the topic.

Under the OST, states are also liable for the activities of non-state actors, whether they are private corporations or international organizations. States must ensure private activities conform to the obligations of the OST. It is up to each party state to create their own domestic legislation to effectuate this. The U.S. created the ability of private citizens to go into space with proper government authorization and supervision through several pieces of domestic legislation. However, while the OST requires “continuing supervision” by nations of private actors while in space, U.S. laws omit regulating activities in space, instead focusing on launches and reentry.

In the early 2000s, the U.S. adjudicated one case of private property rights.  In 2003, Gregory Nemitz registered a claim of real property rights for the entirety of an asteroid. After NASA landed a spacecraft on the asteroid, Nemitz submitted an invoice to NASA for parking and storage fees. NASA’s general counsel denied Nemitz’ claim and Nemitz appealed in court. The court found there are no private property rights in space; thus, there was no basis for compensation.

However, the U.S. pivoted its non-appropriation policy in 2015 with the SPACE Act, where U.S. Congress “created” private property rights for resources in space. Backers of the SPACE Act compared it to the Homestead Act of 1862 (which the idea of “seasteading” is based on).  In 2017, the U.S. National Space Council proclaimed that outer space is not the common heritage of mankind. Then in 2020, NASA announced the Artemis Accords: new principles for the use of outer space including further solidifying private property rights in space. Nine other countries have signed on. Finally, in 2020 President Trump discussed space settlements during the State of the Union, saying, “now we must embrace the next frontier: America’s Manifest Destiny in the stars.”Following this trajectory (homesteading, Manifest Destiny, etc.), it seems possible the U.S. might actually support some of Musk’s plans for Mars if his actions bring more imperialistic value to the U.S. government than logistical headache. However, it seems unlikely the U.S. would support Musk creating a separate nation.

Some commenters have pondered why Musk provided the Starlink/Mars clause so early (well before any of his employees or customers have traveled to Mars). The prohibition of private property ownership in space appears to have already become customary international law – or is at least on the cusp of crystallizing. Musk will want to say that from his country’s original declaration of independence, he has always been a persistent objector to the prohibition of private property rights on Mars. This strategy would make financial sense, as Martian private property rights would reassure Earth-based investors.

Deconstructing Musk’s Plans for Mars

Musk elaborated in 2020 that he plans for his government to be a direct democracy. Commentators have questioned why Musk would choose that form of government, which may be terribly ineffective in response to resource scarcity and constant danger. Further, Musk has become well known as a CEO who will happily violate labor laws, health codes, and pollution regulations back on Earth in furtherance of his company’s financial bottom line. That does not sound like someone who will actually enact or uphold direct democracy.

So, what exactly is Musk up to? It is not occupation because Mars is not populated and Musk is not a state. It is not discovery because Mars is not terra nullius (available land that no one has claimed yet)and again Musk is a private actor. It is not filibustering (a private individual waging private wars against existing countries, i.e., William Walker: another deranged San Francisco Bay Area-based entrepreneur) because even though Musk is a private actor, he is not conquering. Musk’s actions are similar to seasteading (the concept of establishing new countries in international waters); however, as discussed, seasteading has never resulted in a recognized claim to a new country. The closest comparison to what he is doing is probably secession.

It is possible for new states to be created through secession from existing states. Today, the international community disfavors unilateral secession. Under international law, secession is more likely to be accepted if it is in pursuance of self-determination, democratic governance, and has the support of the people of the would-be state.

Musk could argue he is pursuing democratic goals and has the consent of his people (his Starlink customers: over 700,000 of whom already agreed to the contract). Musk can say he should be allowed to secede from the United States because his state will be even more democratic (direct democracy instead of representative democracy). He may even be able to posture himself as escaping human rights violations in the U.S., citing the recent international outcry about systemic racial injustices in the U.S.

However, Musk will have a harder time navigating domestic law as a citizen of the United States. The U.S. is a “perpetual union” that not allow unilateral secession. Musk will not be allowed to secede per domestic laws. When a secession attempt fails, there are other options. Musk, like other actors with the capacity to go into space, will be bound by the laws of the state to which he is a citizen. This means there is a risk that international commercial enterprises like SpaceX will engage in “jurisdiction shopping” for countries with lenient outer space regulations and perhaps even states who never signed the OST. These companies will search for administrations whose licensing and supervisory requirements may be deficient, defective, or intentionally inadequate.

As a final contingency, Musk is saddling up with a U.S. state with its own notorious rebellious streak. Musk is building a rocket production plant and the first fully commercial launch facility capable of launching spacecraft for long-term space travel in Boca Chica, Texas. It is obvious why Musk chose Texas. First, it is close to the equator for launch logistics. Second, it is still in the U.S. for the purposes of trades and permits. Finally, Texas has an adversarial relationship with the federal government and already attempted to secede from the U.S. (and secession is still a popular talking point). If any state would support a U.S.-state based secession attempt to support Musk, it is Texas.

In March 2021, Musk announced he is “creating the city of Starbase, Texas” on currently unincorporated land in Boca Chica, located in southern Texas near the Mexican border. The top county official protested Musk’s declaration, saying, “Sending a Tweet doesn’t make it so… If SpaceX and Elon Musk would like to pursue down this path, they must abide by all state incorporation statutes. The county is also already anticipating litigation against SpaceX for violating agreements with the county around permits and security.

Many commentors are asking why Musk so desperately wants this specific village. Musk’s new “city” is not simply “near the Mexican Border,” it is on it. Boca Chica borders the Gulf of Mexico to the east, Brownsville Ship Channel to the north, and the Rio Grande River and Mexico to the south. If Musk felt he needed a “free city-state” on Earth, to support his “free city-state” on Mars, it seems within the realm of possibilities he could attempt to secede “Starbase” from the U.S. and create his own country (which barely shares a land boundary with the U.S.). He already unilaterally and illegally declared a new city there.

Musk is already in violation of federal laws. SpaceX was denied a safety waiver by the Federal Aviation Administration (FAA) in December 2020 due to Boca Chica-based launch plans that exceeded maximum public safety risk, but following the permit denial, Musk proceeded anyway and the launch ended in a “fireball” explosion. The FAA delayed the next test planned for January 2021 until an investigation could be completed. A former FAA official noted the lack of FAA enforcement against Musk was “puzzling.” Even after mysteriously avoiding any penalties, Musk, upset about the delay, claimed the FAA was “a fundamentally broken regulatory structure.

Musk already bought out most Boca Chica residents and has allegedly been bullying the remaining few with property damage, trespassing, offers of over triple the value of their property, and threats of vague “other measures” if they do not accept. Once the last residents are forced out, a secession attempt then would only involve resistance by the local and federal governments. Is Musk capable of violent measures? Apparently, Musk and SpaceX employees have been spending time at a nearby shooting range. Further, neighbors have grown accustom to sirens warning them when Musk and company are about to do something that could (and sometimes does) cause imminent physical harm, and then evacuating or taking cover. Not to mention the “fireball” incident. Violence seems within the realm of possibilities.

Musk will likely offer financial incentives for Texas to tolerate his activities. He has already promised$30 million to local governments. Musk has also entwined himself with the federal government to the point of mutually assured destruction. SpaceX secured a $2.9 billion contract with NASA for the upcoming Moon missions (though currently contested by Jeff Bezos) and is already heavily involved with other NASA projects.  NASA has become very dependent on SpaceX and Musk.

With all of this in play and no intervention, the compromise will likely be Texas and the U.S. tolerating Musk’s “Starbase” as a semi-autonomous region. Then, Musk’s Starbase “succeeds” as a semi-autonomous region and extends its territory to Mars as a non-member of the OST. This results in the politics of Musk’s presence on Mars having no precedent, no established legal standards, and no established political principles for analysis.

Conclusion

Soon, the largest obstacle to reign in Musk will be the distance to Mars. Will it really be worth launching a billion-dollar interplanetary mission to make an arrest? Mars is several months away at its closest. It will be prohibitively expensive to reign Musk in after the fact. In 2019, a space law conference discussed governance of commercial activities in outer space and found the world is at an “inflection point” and needs to establish global standards of accountability for private actors. The keynote speaker stressed the importance of governance, not simply governments. She looked to the success of the International Space Station as inspiration.

Considering this, a multi-national consortium should be created to regulate all activities on Mars. The consortium should be established in such a way that even the resources required for long-term interstellar travel are regulated in order to prevent rogue actors from working outside the system to control space access and resources, which are instead intended to be shared with all of humanity. At this point, a security council resolution on the topic may also be prudent.

Musk’s plans are just the beginning. There are two other ultra-wealthy titans of industry behind him and plenty more to come. Musk is just the first and most reckless. The international community must act now. The future of space may be speculative, but the issues are urgent. Space is for everyone. We all must partner together to ensure it remains that way.

Ashley is a law student in California. She is studying public international law and public interest law and policy. Ashley enjoys writing about international law, human rights, sovereignty disputes, and self-determination.

Continue Reading
Comments

Science & Technology

From nanotechnology to solar power: Solutions to drought

Published

on

While the drought has intensified in Iran and the country is facing water stress, various solutions from the use of solar power plants to the expansion of watershed management and nanotechnology are offered by experts and officials.

Iran is located in an arid and semi-arid region, and Iranians have long sought to make the most of water.

In recent years, the drought has intensified making water resources fragile and it can be said that we have reached water bankruptcy in Iran.

However, water stress will continue this fall (September 23-December 21), and the season is expected to be relatively hot and short of rain, according to Ahad Vazifeh, head of the national center for drought and crisis management.

In such a situation, officials and experts propose various solutions for optimal water management.

Alireza Qazizadeh, a water and environment expert, referring to 80 percent of the arid regions in the country, said that “Iran has one percent of the earth’s area and receives only 36 percent of renewable resources.

The country receives 250 mm of rainfall annually, which is about 400 billion cubic meters, considering 70 percent evaporation, there is only 130 billion cubic meters of renewable water and 13 billion cubic meters of input from border waters.”

Referring to 800 ml of average rainfall and 700 mm of global evaporation, he noted that 70 percent of rainfall in Iran occurs in only 25 percent of the country and only 25 percent rains in irrigation seasons.

Pointing to the need for 113 billion cubic meters of water in the current year (began on March 21), he stated that “of this amount, 102 billion is projected for agricultural use, 7 percent for drinking and 2 percent for industry, and at this point water stress occurs.

In 2001, 5.5 billion cubic meters of underground resources were withdrawn annually, and if we consider this amount as 20 years from that year until now, it means that we have withdrawn an equivalent of one year of water consumption from non-renewable resources, which is alarming.”

The use of unconventional water sources can be effective in controlling drought, such as rainwater or river runoff, desalinated water, municipal wastewater that can be reused by treatment, he concluded.

Rasoul Sarraf, the Faculty of Materials at Shahid Modarres University, suggests a different solution and states that “To solve ease water stress, we have no choice but to use nanotechnology and solar power plants.

Pointing to the sun as the main condition for solar power plant, and while pointing to 300 sunny days in the country, he said that at the Paris Convention, Iran was required to reduce emissions by 4 percent definitively and 8 percent conditionally, which will only be achieved by using solar power plants.

Hamidreza Zakizadeh, deputy director of watershed management at Tehran’s Department of Natural Resources and Watershed Management, believes that watershed management can at least reduce the effects of drought by managing floods and extracting water for farmers.

Amir Abbas Ahmadi, head of habitats and regional affairs of Tehran Department of Environment, also referring to the severe drought in Tehran, pointed to the need to develop a comprehensive plan for water management and said that it is necessary to cooperate with several responsible bodies and develop a comprehensive plan to control the situation.

He also emphasizes the need to control migration to the capital, construction, and the implementation of the Comprehensive Plan of Tehran city.

While various solutions are proposed by officials and experts to manage water and deal with drought, it is necessary for the related organizations to work together to manage the current situation.

Mohammad Reza Espahbod, an expert in groundwater resources, also suggested that while the country is dealing with severe drought due to improper withdrawal of groundwater and low rainfall, karst water resources can supply the whole water needed by the country, only if managed.

Iran is the fifth country in the world in terms of karst water resources, he stated.

Qanats can also come efficient to contain water scarcity due to relatively low cost, low evaporation rates, and not requiring technical knowledge, moreover, they proved sustainable being used in perpetuity without posing any damages to the environment.

According to the Ministry of Energy, about 36,300 qanats have been identified in Iran, which has been saturated with water for over 2,000 years.

In recent years, 3,800 qanats have been rehabilitated through watershed and aquifer management, and people who had migrated due to water scarcity have returned to their homes.

Water resources shrinking

Renewable water resources have decreased by 30 percent over the last four decades, while Iran’s population has increased by about 2.5 times, Qasem Taqizadeh, deputy minister of energy, said in June.

The current water year (started on September 23, 2020) has received the lowest rain in the past 52 years, so climate change and Iran’s arid region should become a common belief at all levels, he lamented.

A recent report by Nature Scientific Journal on Iran’s water crisis indicates that from 2002 to 2015, over 74 billion cubic meters have been extracted from aquifers, which is unprecedented and its revival takes thousands of years along with urgent action.

Three Iranian scientists studied 30 basins in the country and realized that the rate of aquifer depletion over a 14-year period has been about 74 billion cubic meters, which is recently published in Nature Scientific Journal.

Also, over-harvesting in 77 percent of Iran has led to more land subsidence and soil salinity. Research and statistics show that the average overdraft from the country’s aquifers was about 5.2 billion cubic meters per year.

Mohammad Darvish, head of the environment group in the UNESCO Chair on Social Health, has said that the situation of groundwater resources is worrisome.

From our partner Tehran Times

Continue Reading

Science & Technology

Technology and crime: A never-ending cat-and-mouse game

Published

on

Is technology a good or bad thing? It depends on who you ask, as it is more about the way technology is used. Afterall, technology can be used by criminals but can also be used to catch criminals, creating a fascinating cat-and-mouse game.

Countless ways technology can be used for evil

The first spear was used to improve hunting and to defend from attacking beasts. However, it was also soon used against other humans; nuclear power is used to produce energy, but it was also used to annihilate whole cities. Looking at today’s news, we’ve learned that cryptocurrencies could be (and are) used as the preferred form of payments of ransomware since they provide an anonymous, reliable, and fast payment method for cybercriminals.

Similarly, secure phones are providing criminal rings with a fast and easy way to coordinate their rogue activities. The list could go on. Ultimately, all technological advancements can be used for good or evil. Indeed, technology is not inherently bad or good, it is its usage that makes the difference. After all, spears served well in preventing the extinction of humankind, nuclear power is used to generate energy, cryptocurrency is a promise to democratize finance, and mobile phones are the device of choice of billions of people daily (you too are probably reading this piece on a mobile).

However, what is new with respect to the past (recent and distant) is that technology is nowadays much more widespread, pervasive, and easier to manipulate than it was some time ago. Indeed, not all of us are experts in nuclear material, or willing and capable of effectively throwing a spear at someone else. But each of us is surrounded by, and uses, technology, with a sizeable part of users also capable of modifying that technology to better serve their purposes (think of computer scientists, programmers, coding kids – technology democratization).

This huge reservoir of people that are capable of using technology in a way that is different from what it was devised for, is not made of just ethical hackers: there can be black hats as well (that is, technology experts supporting evil usages of such technology). In technical terms, the attack vector and the security perimeter have dramatically expanded, leading to a scenario where technology can be easily exploited for rogue purposes by large cohorts of people that can attack some of the many assets that are nowadays vulnerable – the cybersecurity domain provides the best example for the depicted scenario. 

Fast-paced innovation and unprecedented threats

What is more, is that technology developments will not stop. On the contrary, we are experiencing an exponentially fast pace in technology innovation, that resolves in less time between technology innovations cycles that, while improving our way of living, also pave the way for novel, unprecedented threats to materialize. For instance, the advent of quantum computers will make the majority of current encryption and digital signature methods useless and what was encrypted and signed in the past, exposed.

The tension between legitimate and illegitimate usages of technology is also heating up. For instance, there are discussions in the US and the EU about the need for the provider of ICT services to grant the decryption keys of future novel secure applications to law enforcement agencies should the need arise –a debatable measure.

However, technology is the very weapon we need to fight crime. Think of the use of Terahertz technology to discover the smuggling of drugs and explosives – the very same technology Qatar      has successfully employed. Or the infiltration of mobile phone crime rings by law enforcement operators via high tech, ethical hacking (as it was the case for the EncroChat operation). And even if crime has shown the capability to infiltrate any sector of society, such as sports, where money can be laundered over digital networks and matches can be rigged and coordinated via chats, technology can help spot the anomalies of money transfer, and data science can spot anomalies in matches, and can therefore thwart such a crime – a recent United Nations-sponsored event, participated by the International Centre for Sport Security (ICSS) Qatar and the College of Science and Engineering (CSE) at Hamad Bin Khalifa University (HBKU) discussed      the cited topic. In the end, the very same technology that is used by criminals is also used to fight crime itself.

Don’t get left behind

In the above-depicted cybersecurity cat-and-mouse game, the loser is the party that does not update its tools, does not plan, and does not evolve.

In particular, cybersecurity can help a country such as Qatar over two strategic dimensions: to better prevent/detect/react to the criminal usage of technology, as well as to advance robustly toward a knowledge-based economy and reinforce the country’s presence in the segment of high value-added services and products to fight crime.

In this context, a safe bet is to invest in education, for both governments and private citizens. On the one hand, only an educated workforce would be able to conceptualize/design/implement advanced cybersecurity tools and frameworks, as well as strategically frame the fight against crime. On the other hand, the same well-educated workforce will be able to spur innovation, create start-ups, produce novel high-skill products, and diversify the economy. 

In this context, Qatar enjoys a head start, thanks to its huge investment in education over the last 20 years. In particular, at HBKU – part of Qatar Foundation – where we have been educating future generations. 

CSE engages and leads in research disciplines of national and global importance. The college’s speciality divisions are firmly committed to excellence in graduate teaching and training of highly qualified students with entrepreneurial  capacity.

For instance, the MS in Cybersecurity offered by CSE touches on the foundations of cryptocurrencies, while the PhD in Computer Science and Engineering, offering several majors (including cybersecurity), prepares future high-level decision-makers, researchers, and entrepreneurs in the ICT domain  – the leaders who will be driving the digitalization of the economy and leading the techno-fight against crime. 

Continue Reading

Science & Technology

Enhancing poverty measurement through big data

Published

on

Authors: Jasmina Ernst and Ruhimat Soerakoesoemah*

Ending poverty in all its forms is the first of the 17 Sustainable Development Goals (SDGs). While significant progress to reduce poverty had been made at the global and regional levels by 2019, the Covid-19 pandemic has partly reversed this trend. A significant share of the population in South-East Asia still lacks access to basic needs such as health services, proper nutrition and housing, causing many children to suffer from malnutrition and treatable illnesses. 

Delivering on the commitments of the 2030 Agenda for Sustainable Development and leaving no one behind requires monitoring of the SDG implementation trends. At the country level, national statistics offices (NSOs) are generally responsible for SDG data collection and reporting, using traditional data sources such as surveys, census and administrative data. However, as the availability of data for almost half of the SDG indicators (105 of 231) in South-East Asia is insufficient, NSOs are exploring alternative sources and methods, such as big data and machine learning, to address the data gaps. Currently, earth observation and mobile phone data receive most attention in the domain of poverty reporting. Both data sources can significantly reduce the cost of reporting, as the data collection is less time and resource intensive than for conventional data.

The NSOs of Thailand and the Philippines, with support from the Asian Development Bank, conducted a feasibility study on the use of earth observation data to predict poverty levels. In the study, an algorithm, convolutional neural nets, was pretrained on an ImageNet database to detect simple low-level features in images such as lines or curves. Following a transfer learning technique, the algorithm was then trained to predict the intensity of night lights from features in corresponding daytime satellite images. Afterwards income-based poverty levels were estimated using the same features that were found to predict night light intensity combined with nationwide survey data, register-based data, and geospatial information. The resulting machine learning models yielded an accuracy of up to 94 per cent in predicting the poverty categories of satellite images. Despite promising study results, scaling up the models and integrating big data and machine learning for poverty statistics and SDG reporting still face many challenges. Thus, NSOs need support to train their staff, gain continuous access to new datasets and expand their digital infrastructure.

Some support is available to NSOs for big data integration. The UN Committee of Experts on Big Data and Data Science for Official Statistics (UN-CEBD) oversees several task teams, including the UN Global Platform which has launched a cloud-service ecosystem to facilitate international collaboration with respect to big data. Two additional task teams focus on Big Data for the SDGs and Earth Observation data, providing technical guidance and trainings to NSOs. At the regional level, the weekly ESCAP Stats Café series provides a knowledge sharing platform for experiences related to the impact of COVID-19 on national statistical systems. The Stats Café includes multiple sessions dedicated to the use of alternative data sources for official statistics and the SDGs. Additionally, ESCAP has published policy briefs on the region’s practices in using non-traditional data sources for official statistics.

Mobile phone data can also be used to understand socioeconomic conditions in the absence of traditional statistics and to provide greater granularity and frequency for existing estimates. Call detail records coupled with airtime credit purchases, for instance, could be used to infer economic density, wealth or poverty levels, and to measure food consumption. An example can be found in poverty estimates for Vanuatu based on education, household characteristics and expenditure. These were generated by Pulse Lab Jakarta – a joint innovation facility associated with UN Global Pulse and the government of Indonesia.

Access to mobile phone data, however, remains a challenge. It requires long negotiations with mobile network operators, finding the most suitable data access model, ensuring data privacy and security, training the NSO staff and securing dedicated resources. The UN-CEBD – through the Task Team on Mobile Phone Data and ESCAP – supports NSOs in accessing and using mobile phone data through workshops, guides and the sharing of country experiences. BPS Statistics Indonesia, the Indonesian NSO, is exploring this data source for reporting on four SDG indicators and has been leading the regional efforts in South-East Asia. While several other NSOs in Asia and the Pacific can access mobile phone data or are negotiating access with mobile network operators, none of them have integrated it into poverty reporting.

As the interest and experience in the use of mobile phone data, satellite imagery and other alternative data sources for SDGs is growing among many South-East Asian NSOs, so is the need for training and capacity-building. Continuous knowledge exchange and collaboration is the best long-term strategy for NSOs and government agencies to track and alleviate poverty, and to measure the other 16 SDGs.

*Ruhimat Soerakoesoemah, Head, Sub-Regional Office for South-East Asia

UNESCAP

Continue Reading

Publications

Latest

South Asia2 hours ago

The Post-US Withdrawal Afghanistan: India, China and the ‘English Diplomacy’

The recent developments in Afghanistan, the impatient Tri-axis and the emphatic India at SCO, with the ‘English Diplomacy’ at display...

Health & Wellness6 hours ago

COVID vaccines: Widening inequality and millions vulnerable

Health leaders agree that a world without COVID-19 will not be possible until everyone has equal access to vaccines. More...

Tech News8 hours ago

Moscow electronic school — the future of education

The Moscow Electronic School (“MES”) project is a cloud-based Internet platform launched in 2016 that unites all educational institutions in...

Economy12 hours ago

Economy Contradicts Democracy: Russian Markets Boom Amid Political Sabotage

The political game plan laid by the Russian premier Vladimir Putin has proven effective for the past two decades. Apart...

city business city business
Finance12 hours ago

Over 50 Companies Reporting on Stakeholder Capitalism Metrics as International Support Grows

The World Economic Forum announces today the continued growth of the coalition of companies supporting the Stakeholder Capitalism Metrics initiative....

East Asia14 hours ago

Japanese firms’ slow and steady exit is sounding alarm bells in Beijing

Last year in March, former Prime Minister Shinzo Abe had indicated Japan would initiate measures to reduce the country heavily...

Style14 hours ago

Bringing People Together with Easy to make Russian Comfort Food

Russia has a long history of droughts and famines. Although there have been no famines since 1947, the former Soviet...

Trending