Connect with us

Science & Technology

Elon Musk’s “City-State” on Mars: An International Problem



The private space industry is booming with companies like SpaceX, Blue Origin, and Virgin Galactic all designing spacecraft to transport people into the cosmos. Elon Musk is the closest to launching a space faring program, with near-term plans to send humans to the Moon and Mars. In October 2020, Musk, a genius billionaire, quietly declared the independence of a new country on Mars. Musk claimed he will have humans on Mars to start building the new “free” “city-state” by 2026. He also declared the new “country” will not “recognize the laws of Earth.” 

All three tech billionaires currently face few obstacles to implement their plans. However, one obstacle for all of them will be navigating international law. Musk already appears to be exploiting many soft spots in international politics, which are no competitor to a ruthless tech titan. Musk’s plans are an urgent international problem that requires a new multi-national solution.

Musk’s Declarations About Mars

For decades, Musk has spoken about his desire for humans to become “interplanetary.”  Musk founded SpaceX in 2001 with his PayPal fortune and the goal to put humans on Mars.  After Russia rejected his offer of $20 million to buy several intercontinental ballistic missiles, Musk began manufacturing and launching his own rockets. Musk plans to start sending humans to Mars by 2026 and then shuttling thousands of people between Earth and Mars before 2030. Muskplans to create a city on Mars by 2050 and then a completely self-sufficient city of a million people on Mars by the end of the century.

Musk is an eccentric guy and not everything he says should be taken seriously. However, it is clear Musk is serious about bringing humans to Mars. In 2017 and 2018, he published detailed plans for settling Mars.  In October 2020, Musk published a terms of service agreement for beta customers of his new Starlink wireless internet service. The agreement included a very specific note about the governance of Mars. In Starlink’s “Pre-Order Agreement,” under “Governing Law,” the contract states,

“For Services provided on Mars, or in transit to Mars via Starship or other spacecraft, the parties recognize Mars as a free planet and that no Earth-based government has authority or sovereignty over Martian activities. Accordingly, Disputes will be settled through self-governing principles, established in good faith, at the time of Martian settlement.”

Further, in December 2020Musk began selling off all of his possessions to help fund the city on Mars. A SpaceX attorney even stated he is actively drafting a Martian constitution. There is every reason to think Musk will follow through.

Common Heritage of Mankind

Ultimately, a city on Mars would simply be an extension of Earth, though separated by a different kind of sea. National jurisdiction and sovereignty are always limited in several areas: outer space, international airspace, international waters, international sea beds. All these areas are considered the “common heritage of mankind” (CHM). These are areas where activities are expected to be carried out in the collective interests of all states and benefits are expected to be shared equitably. Space exploration is a priority for many nations, as well as for the scientific community. There is zealous global interest in space travel, studying celestial objects, and even operating scientific laboratories in space and on planets.

The 1967 Outer Space Treaty (OST) explained in Article II that outer space is not “subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means.” This provision is referred to as the non-appropriation principle. The policy rationale is to dis-incentivize states from “reenacting terrestrial land rushes” and taking boundary disputes into space. Scholars argue that the outer space non-appropriation principle has passed into customary international law.

In this sense, Mars is equivalent to the high seas. According to the United Nations Law of the Sea Convention, “international waters” belong to everyone and no one. There is a history of rogue actors declaring “new nations” in domestic and international waters; a phenomenon often referred to as “seasteading.” None of these “nations” have ever been recognized as legitimate. The U.K. rejected a British man’s declaration that a WWII platform was now the “Principality of Sealand.” Italy rejected the “Republic of Rose Island” off its coast and eventually destroyed the “nation” with dynamite. U.S. courts have rejected seasteading as well, deciding that artificial islands on the coast of Florida were under U.S. jurisdiction. 

Private Property Rights in Space

International law is clear about private property rights in space – there are none. Private property rights can only be created by a state on the property over which the state has sovereignty. The 110 countries that have ratified the OST are not allowed to create private property rights. The OST is ratified by all states with space programs and reflects the consensus of resolutions of the U.N. General Assembly on the topic.

Under the OST, states are also liable for the activities of non-state actors, whether they are private corporations or international organizations. States must ensure private activities conform to the obligations of the OST. It is up to each party state to create their own domestic legislation to effectuate this. The U.S. created the ability of private citizens to go into space with proper government authorization and supervision through several pieces of domestic legislation. However, while the OST requires “continuing supervision” by nations of private actors while in space, U.S. laws omit regulating activities in space, instead focusing on launches and reentry.

In the early 2000s, the U.S. adjudicated one case of private property rights.  In 2003, Gregory Nemitz registered a claim of real property rights for the entirety of an asteroid. After NASA landed a spacecraft on the asteroid, Nemitz submitted an invoice to NASA for parking and storage fees. NASA’s general counsel denied Nemitz’ claim and Nemitz appealed in court. The court found there are no private property rights in space; thus, there was no basis for compensation.

However, the U.S. pivoted its non-appropriation policy in 2015 with the SPACE Act, where U.S. Congress “created” private property rights for resources in space. Backers of the SPACE Act compared it to the Homestead Act of 1862 (which the idea of “seasteading” is based on).  In 2017, the U.S. National Space Council proclaimed that outer space is not the common heritage of mankind. Then in 2020, NASA announced the Artemis Accords: new principles for the use of outer space including further solidifying private property rights in space. Nine other countries have signed on. Finally, in 2020 President Trump discussed space settlements during the State of the Union, saying, “now we must embrace the next frontier: America’s Manifest Destiny in the stars.”Following this trajectory (homesteading, Manifest Destiny, etc.), it seems possible the U.S. might actually support some of Musk’s plans for Mars if his actions bring more imperialistic value to the U.S. government than logistical headache. However, it seems unlikely the U.S. would support Musk creating a separate nation.

Some commenters have pondered why Musk provided the Starlink/Mars clause so early (well before any of his employees or customers have traveled to Mars). The prohibition of private property ownership in space appears to have already become customary international law – or is at least on the cusp of crystallizing. Musk will want to say that from his country’s original declaration of independence, he has always been a persistent objector to the prohibition of private property rights on Mars. This strategy would make financial sense, as Martian private property rights would reassure Earth-based investors.

Deconstructing Musk’s Plans for Mars

Musk elaborated in 2020 that he plans for his government to be a direct democracy. Commentators have questioned why Musk would choose that form of government, which may be terribly ineffective in response to resource scarcity and constant danger. Further, Musk has become well known as a CEO who will happily violate labor laws, health codes, and pollution regulations back on Earth in furtherance of his company’s financial bottom line. That does not sound like someone who will actually enact or uphold direct democracy.

So, what exactly is Musk up to? It is not occupation because Mars is not populated and Musk is not a state. It is not discovery because Mars is not terra nullius (available land that no one has claimed yet)and again Musk is a private actor. It is not filibustering (a private individual waging private wars against existing countries, i.e., William Walker: another deranged San Francisco Bay Area-based entrepreneur) because even though Musk is a private actor, he is not conquering. Musk’s actions are similar to seasteading (the concept of establishing new countries in international waters); however, as discussed, seasteading has never resulted in a recognized claim to a new country. The closest comparison to what he is doing is probably secession.

It is possible for new states to be created through secession from existing states. Today, the international community disfavors unilateral secession. Under international law, secession is more likely to be accepted if it is in pursuance of self-determination, democratic governance, and has the support of the people of the would-be state.

Musk could argue he is pursuing democratic goals and has the consent of his people (his Starlink customers: over 700,000 of whom already agreed to the contract). Musk can say he should be allowed to secede from the United States because his state will be even more democratic (direct democracy instead of representative democracy). He may even be able to posture himself as escaping human rights violations in the U.S., citing the recent international outcry about systemic racial injustices in the U.S.

However, Musk will have a harder time navigating domestic law as a citizen of the United States. The U.S. is a “perpetual union” that not allow unilateral secession. Musk will not be allowed to secede per domestic laws. When a secession attempt fails, there are other options. Musk, like other actors with the capacity to go into space, will be bound by the laws of the state to which he is a citizen. This means there is a risk that international commercial enterprises like SpaceX will engage in “jurisdiction shopping” for countries with lenient outer space regulations and perhaps even states who never signed the OST. These companies will search for administrations whose licensing and supervisory requirements may be deficient, defective, or intentionally inadequate.

As a final contingency, Musk is saddling up with a U.S. state with its own notorious rebellious streak. Musk is building a rocket production plant and the first fully commercial launch facility capable of launching spacecraft for long-term space travel in Boca Chica, Texas. It is obvious why Musk chose Texas. First, it is close to the equator for launch logistics. Second, it is still in the U.S. for the purposes of trades and permits. Finally, Texas has an adversarial relationship with the federal government and already attempted to secede from the U.S. (and secession is still a popular talking point). If any state would support a U.S.-state based secession attempt to support Musk, it is Texas.

In March 2021, Musk announced he is “creating the city of Starbase, Texas” on currently unincorporated land in Boca Chica, located in southern Texas near the Mexican border. The top county official protested Musk’s declaration, saying, “Sending a Tweet doesn’t make it so… If SpaceX and Elon Musk would like to pursue down this path, they must abide by all state incorporation statutes. The county is also already anticipating litigation against SpaceX for violating agreements with the county around permits and security.

Many commentors are asking why Musk so desperately wants this specific village. Musk’s new “city” is not simply “near the Mexican Border,” it is on it. Boca Chica borders the Gulf of Mexico to the east, Brownsville Ship Channel to the north, and the Rio Grande River and Mexico to the south. If Musk felt he needed a “free city-state” on Earth, to support his “free city-state” on Mars, it seems within the realm of possibilities he could attempt to secede “Starbase” from the U.S. and create his own country (which barely shares a land boundary with the U.S.). He already unilaterally and illegally declared a new city there.

Musk is already in violation of federal laws. SpaceX was denied a safety waiver by the Federal Aviation Administration (FAA) in December 2020 due to Boca Chica-based launch plans that exceeded maximum public safety risk, but following the permit denial, Musk proceeded anyway and the launch ended in a “fireball” explosion. The FAA delayed the next test planned for January 2021 until an investigation could be completed. A former FAA official noted the lack of FAA enforcement against Musk was “puzzling.” Even after mysteriously avoiding any penalties, Musk, upset about the delay, claimed the FAA was “a fundamentally broken regulatory structure.

Musk already bought out most Boca Chica residents and has allegedly been bullying the remaining few with property damage, trespassing, offers of over triple the value of their property, and threats of vague “other measures” if they do not accept. Once the last residents are forced out, a secession attempt then would only involve resistance by the local and federal governments. Is Musk capable of violent measures? Apparently, Musk and SpaceX employees have been spending time at a nearby shooting range. Further, neighbors have grown accustom to sirens warning them when Musk and company are about to do something that could (and sometimes does) cause imminent physical harm, and then evacuating or taking cover. Not to mention the “fireball” incident. Violence seems within the realm of possibilities.

Musk will likely offer financial incentives for Texas to tolerate his activities. He has already promised$30 million to local governments. Musk has also entwined himself with the federal government to the point of mutually assured destruction. SpaceX secured a $2.9 billion contract with NASA for the upcoming Moon missions (though currently contested by Jeff Bezos) and is already heavily involved with other NASA projects.  NASA has become very dependent on SpaceX and Musk.

With all of this in play and no intervention, the compromise will likely be Texas and the U.S. tolerating Musk’s “Starbase” as a semi-autonomous region. Then, Musk’s Starbase “succeeds” as a semi-autonomous region and extends its territory to Mars as a non-member of the OST. This results in the politics of Musk’s presence on Mars having no precedent, no established legal standards, and no established political principles for analysis.


Soon, the largest obstacle to reign in Musk will be the distance to Mars. Will it really be worth launching a billion-dollar interplanetary mission to make an arrest? Mars is several months away at its closest. It will be prohibitively expensive to reign Musk in after the fact. In 2019, a space law conference discussed governance of commercial activities in outer space and found the world is at an “inflection point” and needs to establish global standards of accountability for private actors. The keynote speaker stressed the importance of governance, not simply governments. She looked to the success of the International Space Station as inspiration.

Considering this, a multi-national consortium should be created to regulate all activities on Mars. The consortium should be established in such a way that even the resources required for long-term interstellar travel are regulated in order to prevent rogue actors from working outside the system to control space access and resources, which are instead intended to be shared with all of humanity. At this point, a security council resolution on the topic may also be prudent.

Musk’s plans are just the beginning. There are two other ultra-wealthy titans of industry behind him and plenty more to come. Musk is just the first and most reckless. The international community must act now. The future of space may be speculative, but the issues are urgent. Space is for everyone. We all must partner together to ensure it remains that way.

Ashley is a law student in California. She is studying public international law and public interest law and policy. Ashley enjoys writing about international law, human rights, sovereignty disputes, and self-determination.

Continue Reading

Science & Technology

To Protect Democracies, Digital Resiliency Efforts Are Needed Now



Across the globe, more than three billion people have no internet access. But with the increased availability of smart phones and other projects such as SpaceX’s Starlink satellite internet system, that soon will change. To be sure, this unprecedented level of connectivity has the power to be a boon for democratic advancement and economic development. However, without pre-emptive action, it will likely result in the ills we’ve seen with rapid connectivity elsewhere that threaten democratic norms, institutions, and governance. Authoritarians have an answer to these problems: more control. Democracies need an answer too: building pre-emptive digital resilience and preparedness.

Democracies have been consistently caught off guard by rapid digitization. The disruption of information ecosystems has amplified political and economic inequity, leading to various information disorders such as disinformation, declining trust in journalism, increasing social toxicity and dissatisfaction with government, etc. In Myanmar, for example, internet connectivity empowered individuals, but rampant hate speech also facilitated the military’s campaign against the Rohingya. In the Philippines and Brazil, authoritarian populists have used social media to exploit their publics, foment hate, and win elections.

In attempting to manage the consequences of rapid digitization, governments are increasingly eliciting from the authoritarian playbook – implementing haphazard social media and cyber laws, surveillance, and censorship to the detriment of political freedoms. Freedom House’s Freedom on the Net 2020 report outlined a “dismal year for internet freedom” and showed countries like Brazil, Nigeria, Turkey, and Kyrgyzstan following China’s model of blocking internet services and conducting pervasive monitoring on their people’s virtual activities.

Democracies have not provided clear answers to rapid digitization, despite the fact that successes in countries like Finland and Taiwan demonstrate that the internet can – if combined with a thoughtful, pre-emptive, whole of society approach – actively strengthen social cohesion and democratic governance. The introduction of digital infrastructure must be accompanied by digital literacy campaigns. Governments need to be trained in cybersecurity, online communication, and on key policy issues such as open data and privacy. Civil society, especially those working with local communities and marginalized populations, need to be involved early in national digital coordination plans in order to reach more people and to ensure digital inclusion is a core consideration of these plans. These plans should include mobilization of digital safety campaigns, education initiatives, and digital skills trainings. 

To be sure, taking a pro-active, coordinated approach will require resources and time. Embracing the transparency that comes with digitization and the sheer amount of data available might also seem daunting at the beginning. However, countries and communities soon to come online are in advantageous positions to learn from other countries’ mistakes and better understand the opportunities, risks, and threats that digitization brings. There is no reason for them to experience the same negative effects of rapid digitization that we’ve been observing for years. It is better to invest upfront than be left dealing with the democratic backsliding gripping Myanmar, the Philippines, Ethiopia, and many other countries today.

Continue Reading

Science & Technology

Internet of Behavior (IoB) and its Influence on Human Behavioral Psychology



Internet of behavior is a connection between technology and human psychology which gives it the power to generate patterns and influence human behavior.

It is still in initial phase, but was able to grab a lot of attention from technology experts with its mention in ”Gartner’s Top Strategic Technology Trends for 2021”. Gartner predicted that “By the end of 2025, over half of the world’s population will be subject to at least one IoB program, whether it be commercial or governmental”

Source: BMC blog on “What Is the Internet of Behaviors? IoB Explained”

Gartner acknowledges IoB as, behavioral science which can be considered under four key aspects: augmentations, decisions, emotions and companionship

From a human psychology perspective, IoB not only understands the data properly but also applies its understanding to innovate, create and promote new products/services

Currently most of the companies understand buying behavior from the information provided by consumers via interaction between them and application linked to the company. Information collected from interaction via smart devices such as smart phones and its interconnection with other smart devices such as cameras and voice assistance has the power to understand consumer’s likes/dislikes, spending, and so on.

It is aiding organizations to optimize their data from sources such as social media, geolocation, facial recognition, and government agencies citizen data. This data is eventually added and utilized to influence consumer buying behavior.

IoB is using data processing to another level, by connecting collected data from human behavior to analytics and behavioral science. This behavioral data will play a fundamental role in planning and developing strategies for organizations particularly in sales and marketing.

It has the ability to analyse data collected from consumers (such as consumers food choices, how they shop, their preferred travel destination, people with whom and how they interact) and use it to advertise products more effectively and improvise a product’s or service’s overall user experience, thus fulfilling their ultimate goal of selling product. With such capabilities, it aims to generate a substantial enhancement in the development of the sales industry. 

For Instance, a health app that can track sleeping patterns, heart rate or blood sugar levels, can alert users before adverse health situations and suggest them with behavior changes for the positive result. Such information could prove significantly important to companies by providing them with deeper insight into how they should be channelizing their marketing efforts.  

As per Gartner, “The same wearables that health insurance companies use to track physical activities to reduce premiums could also be used to monitor grocery purchases; too many unhealthy items could increase premiums.”

GBKSOFT, a software company has helped golfers to improve their playing skills by correcting their existing ball striking technique and learning new techniques with its app and wearable device. The golfers can connect their handheld device and connect it with their mobile phone, every time the golfer hits the ball the app records and analyses its impact. Thus golfer can not only improvise by analyzing their mistake but also track for any trajectory or stroke force.

Tech giants such as Facebook, Google, and Amazon are continuously tracking and working on algorithms to configure and anticipate consumer desires and behaviors

Covid has brought a wider acceptance of IoB for human behavioral surveillance. IoB can prove to be an extremely effective method to avoid spread of virus. For instance, computer vision or facial recognition can be used to determine if employees are complying with mask protocols or not. While, electronic devices such as RFID tags and sensors on employee or in the environment can be used to check if they are washing or sanitizing their hands regularly or not. Speakers can be used to warn people violating such protocols.

Test and Trace app on smart devices can be used by government agencies to monitor and curtail people’s location and activities to ensure their chances of contacting virus, while effectively enhancing overall public welfare.

While IoB has a great potential to improve our lives it has some negative aspects as well, cyber security being the prime concern. It can give access to cyber criminals with not just behavioral data such as consumer buying patterns or their likes/dislikes but also give access to their banking code, by which they can create advance scams, and take phishing to another level.

Moreover, data generated from social media platform such as Facebook and Instagram is changing the dynamics of value chain, and companies are using this opportunity to modify human behaviors. This goes well with the saying “If you are not paying for it, you are no longer the customer, you are the product being sold”

Some people might find surveillance of behavior as an Invasion of their privacy. “China’s Social Credit System” a Chinese government based surveillance programme is one such example, which includes all characteristics of judging citizens’ behaviour and trustworthiness. With this system the government is supporting good human behaviour and discouraging bad behavior. This is not going well with people who value their civil rights.

Moreover, laws regarding IoT vary widely, and considering IoB has much more sensitive data, both government and private organizations need to establish robust privacy laws to bring legal consistency.

As per Gartner, “Much of the scope and execution of an IoB will depend on local privacy laws, which may affect how data can be used and in what way”.

Regardless of the apprehensions expressed above, IoB has the ability to make our lives effortless, be it improving business, encouraging us to live a healthy life or ensure our safety during pandemic situations. Any government of private organization who implement IoB needs to make sure of strong cyber security and data protection laws.

Continue Reading

Science & Technology

160 million degrees Celsius reached in China: The artificial Sun



Experimental Advanced Superconducting Tokamak (EAST) /VCG Photo

Another important step has been taken by Chinese researchers in developing the ultimate energy source for nuclear fusion.

On May 28, the Experimental Advanced Superconducting Tokamak (EAST), known as the “artificial sun”, operating at the Institute of Materials Science in Hefei (Chinese Academy of Sciences), achieved the new limit of the planet reaching the highest temperature ever recorded.

It reached one hundred and twenty million degrees Celsius, for one minute and 51 seconds. EAST also managed to maintain a temperature of 160 million degrees Celsius for 20 seconds. This is a higher peak than that of the sun’s core, which can reach a limit of 15 million degrees Celsius.

A tokamak (Russian: toroidal’naja kamera s magnitnymi katushkami: Russian acronym for “toroidal chamber with magnetic coils”) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. Torus is a ring-shaped device in which a hot, rarefied gas (usually hydrogen, in the plasma state) is kept cohesive and away from inner walls by a magnetic field created by electromagnets outside the chamber. It was originally conceptualized and invented in the 1950s by Soviet professor Sadyk Azimovič Azimov (1914-88) and others at the Kurčatov Institute in Moscow.

China’s experimental nuclear fusion device was created in 1998 and was called HT-7U at the time. With a view to making it easier to pronounce and remember, as well as having a precise scientific meaning for national and foreign experts, HT-7U was officially renamed EAST in October 2003.

In 2006, the EAST project was completed in a definitive and higher quality manner. In September-October 2006 and in January-February 2007, the EAST device performed two discharge debugs and successfully achieved stable, repetitive and controllable high-temperature plasmas with various magnetic configurations.

EAST has a nuclear fusion reaction mechanism similar to that of the sun. Its operating principle is to add a small amount of the hydrogen isotope deuterium or tritium to the device’s vacuum chamber and generate plasma through a transformer-like principle, then increase its density and temperature to cause a fusion reaction – a process that generates enormous energy.

Over the ten years since its construction, EAST has continually made progress in the search for controllable nuclear fusion.

In 2009, the first round of EAST tests was successful, thus putting China at the forefront of nuclear fusion research. In February 2016, EAST’s physics tests made another major breakthrough, achieving the longest temperature duration reaching 50 million degrees. In 2018, EAST reached a number of important milestones including 100 million degrees.

This means that mankind has made another major advance in its efforts to turn nuclear fusion into new, clean and inexhaustible energy.

Energy is the fundamental driving force behind the functioning of every aspect of life. The energy used today has many shortcomings and cannot fully meet human needs, while nuclear fusion energy is considered the ideal energy par excellence.

According to calculations, the deuterium contained in one litre of seawater can produce the equivalent of the energy of 300 litres of petrol, released after the nuclear fusion reaction, besides the fact that the product is not harmful. Although it is not a “perpetual motion machine”, nuclear fusion can provide energy for a long time. Not only can Marvel’s hero Iron Man rely on the small reactor in his chest, but also raw materials can be obtained from seawater at an extremely low cost.

The first condition for nuclear fusion is to keep fuel in the fourth state of matter, after solid, liquid and gas – i.e. the plasma state.

When the plasma temperature reaches tens of millions of degrees Celsius or even hundreds of millions of degrees, the atomic nucleus can overcome the repulsive force to carry out the polymerisation reaction. Coupled with sufficient density and a sufficiently long thermal energy confinement time, the nuclear fusion reaction is able to continue steadily.

Nevertheless, it is particularly difficult to achieve both the temperature of hundreds of millions of degrees Celsius and the long-term confinement control of plasma stability.

While recognising that nuclear fusion is the ultimate goal for solving the problem of mankind’s future energy, there is both cooperation and competition in international research.

A sign of cooperation is that on July 28, 2020, a ceremony was held in France to launch the major project to install the International Thermonuclear Experimental Reactor (ITER). The ITER project is jointly implemented by China, the Republic of Korea (South Korea), Japan, India, Russia, the European Union and the United States.

On December 28, 2020, Seoul’s Korea Superconducting Tokamak Advanced Research (KSTAR) set a new world limit at the  time and its ionomer maintained a temperature of over 100 million degrees for 20 seconds.

In early 2018, the Plasma Science and Fusion Center at the Massachusetts Institute of Technology had begun designing and building a Soonest/Smallest Private-Funded Affordable Robust Compact fusion reactor more advanced than ITER, with a volume tens of times smaller and significantly reduced in cost. But it remains to be seen whether this goal can be achieved.

Chinese researchers have now achieved significant progress in this field and taken another important step towards obtaining energy from nuclear fusion.

In the future, if the production capacity and energy supply of the “artificial sun” is achieved, it will be another technological revolution that can promote social progress even more than the industrial revolution which, in fact, meant the beginning of pollution for the planet and exploitation by capital.

Although there is still a long way to go before the construction of the naval port on Jupiter described by the Chinese writer, Liu Cixin, in his novel The Three-Body Problem (San Ti), mankind is indeed advancing on the road to controllable nuclear fusion.

Nuclear fusion energy has exceptional advantages in producing rich resources, as well as no carbon emissions, so it is clean and safe. It is one of the ideal energy sources for mankind in the future, and can contribute significantly to achieve the goal of eliminating said carbon.

The two greatest difficulties in generating energy from nuclear fusion lie in regularly reaching hundreds of millions of degrees, and in stable ignition and control of long-term confinement.

For the time being, multiple extreme conditions are highly integrated and organically combined at the same time, but this is very difficult and challenging.

In hitting the record, it is the first time that the EAST device has adopted key technologies such as the first water-cooled all-metal active wall, as well as the high-performance tungsten deflector and high-power wave heating states.

At present, there are over 200 core technologies and nearly 2,000 patents on EAST, bringing together cutting-edge technologies such as ‘ultra-high temperature’, ‘ultra-low temperature’, ‘ultra-high vacuum’, ‘ultra-strong magnetic field’ and ‘ultra-high current’.

The total power is 34 megawatts, which is equivalent to about 68,000 domestic microwave ovens heating up together. For 100 million degrees Celsius and -269 °C to coexist, it is necessary to use “ultra-high vacuum” with an intensity of about one hundredth of a billionth of the surface atmospheric pressure suitable for insulation. With a view to supporting this complex extreme system, almost a million parts and components work together on EAST.

The new EAST record further demonstrates the feasibility of nuclear fusion energy and also lays the physical and engineering foundations for marketing.

Energy on earth, stored in the form of fossil fuels, wind, water or animals and plants, originally comes from the sun. For example, fossil fuels evolved from animals and plants millions of years ago, and their energy ultimately comes from solar energy stored by the photosynthesis of plants at the base of the food chain. Therefore, regardless of the type of energy used by humans, they ultimately use the sun energy that comes from nuclear fusion.

If mankind could master the method for releasing the nuclear fusion energy in an orderly manner, it would be equivalent to controlling the sun energy source. Therefore, this is the reason why the controllable nuclear fusion reactor is called the “artificial sun”.

Continue Reading