Energy
Pakistan’s water-and-energy crisis

The Indus Water Treaty talks between India and Pakistan had been in limbo since India abrogated special status (Article 370) of the occupied Kashmir and usurped hereditary rights(Article 35-A) of its permanent citizens. Following peace on the line of control, the two countries, water commissioners of the two countries held a meeting in March 2021 (though supposed to be held in 2019) to resolve outstanding issues. The main focus was on Pakistan’s objections to design of Indian hydropower projects on the Chenab River. India is building the 1,000 MW Pakal Dul Hydro Electric Project on river Marusudar, a tributary of the Chenab. The project is located in Kishtwar district of Jammu & Kashmir. The second project, Lower Kalnai, is being developed on the Chenab River.
The meeting was delayed because of India’s pugnacious attitude (surgical strikes, cartographic aggression on Kashmir, etc.).
The Indus Waters Treaty is a water-sharing treaty between India and Pakistan, facilitated by the World Bank, to use the water available in the Indus River and its tributaries. The treaty allocated the waters of the western rivers that are the Indus, Jhelum, and Chenab to Pakistan and those of the eastern rivers, namely the Ravi, Beas, and Sutlej, to India. According to provisions of the Indus Waters Treaty, all the waters of the Eastern Rivers (Sutlej, Beas, and Ravi), amounting to around 33 million acre feet (MAF) annually, is allocated to India for unrestricted use and the waters of the Western rivers (Indus, Jhelum, and Chenab) amounting to around 135 MAF annually largely to Pakistan. Under the treaty, India has been given the right to generate hydroelectricity through run-of-the-river projects on the western rivers, subject to specific criteria for design and operation.
The treaty also envisaged funding and building of dams, link canals, barrages, and tube wells like the Tarbela Dam on the Indus River and the Mangla Dam on the Jhelum River.
Since time immemorial, the Indus-river system has been used for irrigation in undivided India. However modern irrigation- engineering work was initiated dating 1850s during the British rule. The treaty was necessitated by partition of India into the dominions of India and Pakistan in 1947.
The fruition of the treaty is attributed to David Lilienthal, former head of both the Tennessee Valley Authority and the U.S. Atomic Energy Commission.
After six years of talks, Indian Prime Minister Jawaharlal Nehru and Pakistani President Mohammad Ayub Khan signed the Indus Waters Treaty in September 1960. The Indus-water treaty required the creation of a Permanent Indus Commission, with a commissioner from each country, to resolve e any difference of opinion on architecture, design, and other aspects of the dams that the two countries may build on the allocated rivers. Aside from bellicose statements to scrap the treaty, the Indus treaty remained intact though the two countries fought many wars.
In 2017, India completed the building of the Kishanganga dam in occupied Kashmir and continued work on the Ratle hydroelectric power station on the Chenab River despite Pakistan’s objections.
In post-Ayub era, Pakistan was not able to make progress on making new dams particularly the Kalabagh Dam. The construction of the dam was delayed owing to frivolous objections raised by the three provinces that are Sindh, Balochistan and Khyber Pakhtunkhwa.
Instead of trying to evolve consensus on the vital water projects, Pakistan’s politicians remained engrossed in pettifoggery or machinations to pull down whichever government happened to be in power.
Necessity of the Kalabagh Dam
This project was approved by the Technical Committee on Water Resources during 2003-2005. However, the feasibility report has not been implemented for over 15 years. Now three of the four provinces (excluding the Punjab) are at daggers drawn over it. The fact however remains that the inter-provincial committee was composed of eight technical experts, two from each province.
The Committee also looked into all aspects including the effect of dilution of seawater with fresh water, seawater intrusion into the groundwater, riverine irrigation, and forests fisheries (Pala fish, shrimp, kharif and rabi cultivation), besides growth of Mangrove forests. The project had already been approved by the World Bank Indus Special Study Group in its report titled Development of Water and Power Resources of Pakistan: A Sectoral Analysis (1967). The estimated cost, then, was US$6.12 billion, over six years from 1977 to 1982.
After commissioning of Tarbela Dam in 1976, the dam could have been built in six years by 1982. The cost per unit of 12 billion units, the KBD hydel electricity was Rs1.5 as compared to Rs16.5 per unit from thermal sources.
The dam was to serve as a receptacle to store monsoon flows of the upper reaches of the mighty Indus.
Our power shortage then was 4000-5000 MW. The estimated cost of constructing the dam was US$6.12 billion, over six years from 1977 to 1982. After commissioning of Tarbela Dam in 1976, the dam could have been built in six years by 1982. The cost per unit of 12 billion units the hydel electricity was Rs.1.5 as compared to Rs. 16.5 per unit from thermal sources. We are losing Rs. 180 billion per year due to ten time costlier production (12billion xRs.15 billion). Add to it loss of US$ 6.12 billion per annum from due to the superfluous flow of 30 million Acre Feet at of water from Kotri Barrage into the Arabian Sea (one MAF valued at US$1-1.5 billion).
Our water resources reserves have not risen pari passu with growth in population, 32.4 million in 1948 to 154.6 million in 2005, and 207.8 million in 2017. In kharif season, rivers flow at 84 percent while only 40 percent during the rabi season. The present water storage capacity in Pakistan is hardly 11.77million acres per feet (MAF) that is about only eight percent of the annual flow.
Factors of water crisis
Three provincial assemblies resolved against building the KBD. A politician alleged the dam would convert Sind into a desert. Apprehensions against the dam could be allayed by reviewing Water Apportionment Accord (as directed by Lahore High Court also vide its Order dated November 29, 2012, case no. WP 8777). No justification to kill the goose that lays the golden eggs.
Losses due to delay
The losses due to the delays in the project have soared up to Rs180 billion a year due to its 10-time costlier construction (1990 estimate). Added to it is the loss of $6.12 billion per annum due to superfluous flow of 30 million acre feet of water from Kotri Barrage into the Arabian Sea. In mangrove season, rivers flow at 84 per cent while only at 40 per cent during Rabi season. The present water storage capacity in Pakistan is hardly 11.77MAF that is only about eight per cent of the annual flow.
Legislative assemblies of three of our provinces, barring the Punjab province, have been bitterly opposing construction of the Kala Bagh Dam. Are they justified? To answer the question we have to look into various aspects of the construction of the dam, particularly feasibility and repercussions of constructing the dam. After enactment of the Eighteenth amendment, building of dams is now a provincial subject. The fact however remains that water security is more a national subject than a provincial one.
Debate about pros and cons
The construction of Kalabagh dam is predicted to supply over 4 million acre-feet additional water to Sindh. While explaining benefits of Kalabagh Dam, WAPDA engineer Shamsul Mulk stated that China would be generating around 30,000 megawatts of electricity from dams. “Even India has more than 4,000 dams,” he said. “We lose billions due to the non-construction of dams.”
Concluding remarks
The opposition to the Kalabagh Dam is whimsical rooted in political rhetoric. According to the United Nations’ forecast, water scarcity would be Pakistan’s greatest problem in current century.
The country has been in the grip of a severe energy crisis for several years. No one even talks about Kalabagh Dam. Towards the end of the 1980s, Pakistan met 70 percent of its energy needs from hydel (hydroelectric) power and 30 percent from thermal energy. By 2012-13, Pakistan became dependent on thermal energy generated from costly furnace oil and diesel by up to 44 percent, with the remaining 56 percent being generated from other, mainly thermal, sources. This change had a cascading effect on prices and the consumers’ bills skyrocketed.
Hydel energy remains largely neglected, despite its low production cost. Many public sector electricity generation plants have outlived their utility. Without cheaper electricity, circular debt will continue to mount. Circular debt, accumulated in the power sector, is a handy excuse for the energy crisis. This debt piles up when downstream customers fail to pay their bills to upstream suppliers (or producers) in time. Who are the defaulters? They include not only ordinary citizens, but also the provinces, the public sector, influential corporations and powerful individuals (including political tycoons). To continue supplying power, the thermal producer has to borrow (and later pay interest charges and repay the contracted loan) and find alternative financial sources, unless the government makes the bounteous payment. The solution is simple: power distribution companies should promptly pay their dues to the generation companies.
However, circular debt is only the tip of the iceberg. There are many other factors blighting the energy scenario. The government needs to evolve a policy in which the power sector is prioritized.
Energy
Seeing Japan – Indonesia Collaboration in Energy Transition Cooperation

Holding the G7 presidency, Japan is increasingly active in establishing relations with several countries. One of them is Indonesia. The relations that have existed so far between Indonesia and Japan are widely visible on the surface. One of them is in the energy transition sector. Indonesia is in need of a large investment to achieve net zero emissions in 2060. An investment of more than 500 million US dollars is needed to make this happen. This is indicated by the great effort to reduce energy that uses fossil fuels (coal, oil and gas) in people’s lives. Including efforts from Japan to cooperate with Indonesia or vice versa in achieving net zero emissions.
Abundant Natural Resources: A Privilege for Indonesia
The abundance of natural resources owned by Indonesia is an important point for the continuation of cooperation between Japan and Indonesia. Natural resources such as hydrogen, geothermal are important values to be further developed into renewable energy. This is a breath of fresh air for Indonesia, which is trying to achieve net zero emissions by 2060.
Replacing fossil fuels such as coal, oil and gas to renewable energy requires extra effort, Indonesia which is rich in energy resources requires a lot of money in terms of exploration of natural resources. renewable energy resources, such as hydrogen, geothermal. renewable in Indonesia. One of them is through a funding scheme through the Asian Zero Emission Community (AZEC). Through this funding, Japan, which is known to be very generous in helping developing countries in terms of energy, is expected to be able to bring change to the renewable energy transition in a country rich in energy resources, Indonesia. This transition certainly requires a short and gradual process.
State Electricity Company of Indonesia abbreviated as PLN, states that dependence on new coal will decrease in 2030. This is due to the presence of power plants from renewable energies such as geothermal, solar, hydrogen and nuclear and wind (Kompas, 2023).
Japan’s Investment to Indonesia
Indonesia, with all its abundance of energy resources, is considered capable of developing an energy transition. The development of electricity from geothermal, water and biomass are the main sector. This was conveyed by the Government of Japan through Deputy for International Affairs, Ministry of Economy and Industrial Development of Japan Izuru Kobayashi. He stated that his party was ready to assist Indonesia in achieving net zero emissions in 2060 with an environmentally friendly funding and technology assistance scheme.
The above was also supported by another Japanese party, namely from Sumitomo Mitsui Banking Corporation (SMBC). Quoting from IJ Global, SMBC has financial assistance to Asia Pacific countries for clean energy projects through Mitsubishi UFJ Financial Group of US$1.5 billion, Sumitomo Mitsui Financial Group of US$1.2 billion, and Mizuho Financial Group of US$1.2 billion. 1 billion US dollars. In Indonesia alone, as of September 2022, SMBC had invested US$221 million.
Various forms of support by Japan as donors and companions for Indonesia to develop renewable energy should be appreciated. According to the author opinion, this is a challenge for the Government of Indonesia and all of stakeholders inside, to create an investment environment that is safe, good and useful for Indonesia’s future. The use of fossil fuels such as coal for power generation needs to be slowly substituted using renewable energy. The Jokowi administration’s policy of subsidizing electric vehicles for the public can be an entry point for the continuation of Indonesia-Japan collaboration in realizing the energy transition.
Energy
The Maneuvering Of Gas Commodities As Securitization Of Russia’s Geopolitical Position

Authors: Luky Yusgiantoro and Tri Bagus Prabowo
In 2012, the Yakutia-Khabarovsk-Vladivostok gas pipeline project was redeveloped under The Power of Siberia (News Ykt, 2012). Putin legalized Gazprom (contractors: Gazprom Transgaz Tomsk). The idea named “Power of Siberia” represents the power of gas pipelines to shape and influence Russia’s geopolitical and geoeconomic situation. A new identity will be launched, conveying the Yakutia-Khabarovsk-Vladivostok gas pipeline and gaining international prominence. The Power of Siberia project is an integrated form of GTS (Gas Transmission System) that will bring the Irkutsk gas region in the fertile eastern part of Russia to the Far East and China. The pipeline location is located in the “Far East,” incredibly close to the border with China, and generally in the Asia-Pacific region. Initially, this gas pipeline was built to facilitate gas trade with China and reduce China’s dependence on coal (Pipeline Journal, 2022). What is the value of this project for both countries to become global concerns?
Furthermore, they have the ability or range to carry gas communications for approximately 4000 km. Due to its geographical proximity and shared economic interests, China is Russia’s most progressive partner in terms of a multifaceted regional and international strategy. Russia and China are known as close partners. The aftermath of Russia’s political alliance was to regain global power, status, and influence lost after the collapse of the Union of Soviet Socialist Republics in 1991, which was the driving force behind the end of the Cold War (Oualaalou, 2021 ). Russia has articulated a vision of rebuilding its global reputation using energy, military might, intelligence, and diplomacy. Russia wants to play a crucial role in the global multipolar system because the West rejects Russia’s vision for a new geopolitical order. They saw many important events related to Russia’s moves in the international order, including its response to the actions of the North Atlantic Treaty Organization (NATO) to try to dominate the nations of the world. The former Soviet Union (East), the failures in the Middle East, the annexation of Crimea, and one of Moscow’s recent invasions of Ukraine mark the military as a turning point in Russian geopolitical politics, especially during the Putin era. Russia has three strategic initiative points, including the ability to deploy and interconnect the means (intelligence, diplomacy, military, cyber, and energy) to gain influence and extend Russia’s global footprint. There is.
Moreover, the Fallacies and Western Ties strategy contradicts America First foreign policy tenets (unipolar) and impulsive decisions as a security threat. Russia wants to maintain its lack of regional interests in certain Baltic states (those still under Russian control) and the Balkans (Cooley, 2017). The Balkans (Albania, Bulgaria, Bosnia and Herzegovina, Croatia, Kosovo, Montenegro, North Macedonia, Romania, Slovenia, and Serbia) have been the cornerstones of great power rivalry for centuries. NATO (North Atlantic Treaty Organization) and the EU (European Union) used the momentum of Yugoslavia’s dissolution in the 1990s to integrate the Balkans as geopolitical hotspots on the Western Front (European Policy). War analysts say the ongoing Ukraine conflict is a way for Russia to raise its stakes in the Balkans and reassert its regional influence (McBride, 2022).
In 2020, natural gas will still be the world’s third-largest primary energy requirement for the global community. Even though the COVID-19 pandemic began in 2019, demand for natural gas increased by 5.3% to 4 trillion cubic meters (TCM) in 2021 (BP, 2022). In 2021, Russia’s total natural gas production will be 701.7 billion cubic meters, the second largest globally, contributing to the strong demand in the global energy market. Russia is essential in the natural gas market (Sonnichsen, 2022). The climate crisis is the most obvious obstacle in the global gas market model. It originates from burning carbon with materials derived from fossil fuels such as oil, natural gas, and coal. However, natural gas is acceptable during the energy transition as it burns the least carbon dioxide (CO2) and pollutants of these three substances (EIA, 2022). It is easier than supplying a gas infrastructure that does not provide infrastructure. Operationally, it is optimal. Talks about climate protection, the climate crisis, and the energy transition are being shaped by Western countries as a way of highlighting Europe’s dependence on gas from Russia, which is geographically accessible and still has gas in other gas reserves. The decision to stop sourcing natural gas from Russia continues to cause European controversy. The pipeline network actively built between Russia and Europe is an essential aspect of why this relationship is used as a tool for Russia to apply pressure—on territorial Europe. Europe uses a climate scenario, and Russia uses a gas-dependent scenario. Efficiency and effectiveness will not be achieved if Europe suddenly has to look for other reserves or switch entirely to this energy mix. Then, with Russia’s eloquence in exploiting the situation and the status quo, natural gas pipelines were used as a form of Russian energy diplomacy to dominate its (European) neighbors. Recognizing that the Western natural gas market is no longer preconditioned, moving target consumers to the Asia-Pacific region is one of the most effective energy plans for Russia’s fossil fuel expansion.
Siberia’s first electricity will cost 770 billion rubles, and the investment in gas production will cost 430 billion rubles. The 1,400 mm natural gas pipeline capacity will increase to 61 billion cubic meters (2.2 trillion cubic feet) of natural gas annually. The pipeline lets the world see natural gas as one of the fossil fuels and does not pollute the air with the carbon and other substances of the climate crisis. , through the capital Beijing and down to Shanghai. According to state media, the intermediate phase will go online in December 2020, with the final southern section expected to start delivering gas in 2025 (Cheng, 2022). Through this agreement, Russia aims to extend its power beyond Mongolia into Siberia 2 in 2030 (IEA, 2022). Conditions for Europe to get 40% of natural gas from Russian pipelines. Germany, in particular, sources about half of its natural gas from Russia (Baldwin, 2022). Despite international media reports of embargoes and sanctions, the crisis has hit Europe hard. Europe must adapt its economic policies to politically justified policies and coordinate them with each other. However, this is a geopolitical struggle, and we must ensure that the country retains its absolute superiority. Russia chooses to invest in and plan for natural gas markets in regions that require or depend on natural gas in the energy sector, i.e., Asia-Pacific via China. China, influencing the Belt and Road Initiative (BRI) plan, is reshaping the geoeconomic position of Russia’s Siberia 1 and Siberia 2 power markets (Lukin, 2021). “Geopolitics is all about leverage” is one of Thomas Friedman’s influential geopolitical maxims. If a country cannot expand its influence, it remains a loser. Nevertheless, Russia is far from this analogy, as mentioned earlier. Russia continues to secure its geopolitical position. It is the embodiment of growing confidence in the reliability of natural gas. Russia still wants to become a major player in natural gas.
Energy
Remapping the EU’s Energy Partners to Ensure Energy Security and Diversification

Energy security has been a buzz word in Brussels for a few decades but since Russia’s invasion of Ukraine, followed by sanctions, Russian gas cut-off and physical destruction of North Stream pipelines, forecasts on strained EU energy production due to drought, the stakes have gotten much higher. This was confirmed on March 10th by a joint statement by the US President Joe Biden and European Commission President Ursula von der Leyen, reiterating both parties’ determination to “build clean energy economies and industrial bases”, including clean hydrogen and continue to work together “to advance energy security and sustainability in Europe by diversifying sources, lowering energy consumption, and reducing Europe’s dependence on fossil fuels”.
Last week, the EU energy chief Kadri Simson encouraged all Member States and all companies to “stop buying Russian LNG, and not to sign any new gas contracts with Russia. The EU has pledged to quit Russian fossil fuels by 2027 and replaced around two-thirds of Russian gas last year.
In this context, the Southern Gas Corridor (SGC), delivering Azerbaijani gas through (Trans-Anatolian Pipeline) TANAP and Trans-Adriatic Pipeline (TAP) to the EU, plays a key role in current diversification efforts. The EU increased gas imports via pipelines from Azerbaijan from 8.1 bcm to 11.4 bcm last year. Only two years after its completion, the expansion of the Corridor seems to be likely as the EU and Azerbaijan stroke a deal in July 2021 to double the volume of gas delivery to 20 bcm by 2027 in addition to plans to tap into Azerbaijan’s renewables potential, such as offshore wind and green hydrogen. While encouraging Azerbaijan’s accession to the Global Methane Pledge, the deal aims at collecting natural gas that would otherwise be vented, flared, or released into the atmosphere.
With the opening of the interconnector Greece-Bulgaria (IGB), at least 11.6 bcm of gas is expected to be delivered from Azerbaijan to the EU this year. The IGB has been dubbed as a game-changer for the EU’s energy security, especially as it enabled supplies to Bulgaria and Romania. A Memorandum of Understanding on gas supplies between Azerbaijan and Hungary was also signed this year, which shows that more interconnectors will be needed in the EU if TANAP would be expanded from 16 to 32 bcm and TAP from 10 to 20 bcm.
Moreover, investments will be needed to increase gas production in existing and new gas fields (Shah Deniz, Azeri Chiraq Guneshli, Absheron, Shafaq-Asiman, Umid-Babek, etc.), especially considering growing energy demand in Azerbaijan and its neighbours. Since the Russia-Ukraine war, 10 European countries turned to Azerbaijan to increase existing supplies or to secure new supplies. To meet such growing demands, Azerbaijan is poised to increase cooperation with neighbouring states, such as Turkmenistan, which is home to 50 trillion cubic metres of gas reserves – the world’s 4th largest reserves.
Following the Azerbaijani-Turkmen decision to jointly develop the formerly disputed Dostluq gas field, a trilateral swap deal between Iran, Azerbaijan, and Turkmenistan, and the 2018 Convention on the status of the Caspian Sea by all the littoral states; Azerbaijan, Turkmenistan, and Turkey stated that they were looking “to form a coordinated and multi-option system for delivering energy resources to global markets” on December 14th last year.
These developments could be harbingers of a new Trans-Caspian Gas Pipeline (TCGP), a 180-mile under-sea pipeline that could be integrated into the SGC. Labelled as an EU Project of Common Interest, which could also be eligible for funding under the 2019 US European Energy Security and Diversification Act, this strategic under-sea pipeline project could bring an end to the EU’s energy crisis by securing a cheap source of natural gas, whose price is independent of LNG prices while counterbalancing Chinese, Russian and Iranian influence in Central Asia and beyond. On the other hand, Azerbaijan began the transit of oil from Kazakhstan this year in addition to Turkmenistan, which highlights the potential to use the Middle Corridor for hydrocarbons.
During the 9th Southern Gas Corridor Advisory Council Ministerial Meeting and 1st Green Energy Advisory Council Ministerial Meeting in Baku in February, EU Energy Commissioner Kadri Simson stated “Azerbaijan can potentially become the exporter of renewables and hydrogen to the EU”. At the end of last year Azerbaijan, Georgia, Romania, and Hungary agreed to establish a green corridor to supply the EU with around four gigawatts of electricity generated by windfarms in Azerbaijan with the support of the European Commission.
Over the last several months, Azerbaijan signed documents that will provide investments to create 22 gigawatts of renewable sources of energy, both onshore and offshore. In April 2021, the World Bank started funding the offshore wind development in Azerbaijan, which has a potential of 157 GW. In addition to the Caspian Sea, which ranks second in world for its wind energy potential, Azerbaijan has an estimated 27GW in wind and solar power onshore.The current construction of wind and solar plants in Alat (230 MW), Khizi and Absheron (240 MW) and Jabrayil (240 MW) as well as new investment plans, including in Nakhchivan Autonomous Republic, are expected to further boost renewables production in the Caspian state all by living up to its vast green potential. While the country, with a population of 10 million, accounts for only 0.15% of total global greenhouse gas emissions, it defines green growth as a key priority for 2030. The EU supports the implementation of Baku’s Paris Agreement commitments through the EU4Climate initiative.
The Russia-Ukraine war may create a window opportunity for the EU to engage in concrete actions rather than high-flying buzzwords, pushing the bloc to do more strategic and visionary planning regarding future projects linked to its energy security, such as TCGP, and finally diversify away from Russian energy sources for good. Azerbaijan has proved to be a stable partner in these challenging times, which manifested the vulnerability of certain EU states against Russian economic and political pressure due to Gazprom’s immense infiltration of their gas markets for the past several decades. Now it’s the time to play fair game by a new playbook and to remap the European energy partners while investing in a stable, predictable, affordable, and sustainable energy future for the EU.
-
Economy2 days ago
U.S. Is Threatening to Default China Debt Repayment, What Will Beijing Do?
-
Eastern Europe4 days ago
The dilemma of China’s role as Mediator in the case of Ukraine
-
New Social Compact4 days ago
Aurat March 2023 & Agenda Setting
-
Economy4 days ago
Unpacking the “China Debt Trap” Narrative: Nuances and Context
-
World News4 days ago
Seymour Hersh: The cover-up
-
Intelligence4 days ago
Time for an International Cyber Court?
-
World News3 days ago
FT: Is France on the road to a Sixth Republic?
-
Economy3 days ago
Marriage of Sanctions Convenience: Russia Rethinking the EAEU Role