Connect with us

Environment

Meeting the global phosphorus challenge will deliver food security and reduce pollution

Avatar photo

Published

on

“It is unacceptable that hunger is on the rise at a time when the world wastes more than 1 billion tonnes of food every year. It is time to change how we produce and consume, including to reduce greenhouse emissions,” says United Nations Secretary-General António Guterres.

The Secretary-General will convene a UN Food Systems Summit in 2021 to launch bold new actions to transform the way the world produces and consumes food, delivering progress on all 17 Sustainable Development Goals.

For decades, synthetic fertilizer – containing nitrogen, phosphorus, and potassium – has been used all over the world to increase crop yields. Plants need phosphorus to grow but using too much of it can harm the environment.

The global phosphorus cycle is broken, experts say – in some regions of the world too much phosphorus is being added to soils to grow food, contributing to nutrient pollution of lakes, rivers and coastal ecosystems. Elsewhere, farmers can’t access enough phosphorus to meet food demands. As the global population grows, the global phosphorus cycle must be re-mapped to ensure sufficient food for all whilst reducing costly environmental damage.

Where phosphorus use has been high, losses from agricultural land and through human waste have led to the pollution of fresh waters and coasts with excess nutrients, a process called eutrophication.

Humans are reliant on clean and safe freshwater and coastal ecosystems. They provide clean drinking water, protein and livelihoods to large numbers of people. So, preventing phosphorus pollution of these sensitive ecosystems is vital for sustainable development.

Eutrophication causes harmful algal blooms, which can now be viewed from space, and contributes to global scale biodiversity loss, oxygen “dead zones” threatening fisheries, and the contamination of drinking water supplies.

The United Nations Environment Programme (UNEP) and others, such as the Global Partnership on Nutrient Management, are calling for better management of phosphorus for the benefit of people and planet.

Phosphate rock is the main source of easily accessible phosphorus for the manufacture of synthetic fertilizer and has been produced in large quantities since World War II. However, increasing phosphorus recycling from wastes has the potential to increase food security whilst also reducing impacts on the environment. 

“The signs of geopolitical constraints regarding phosphate rock reserves are already evident and are likely to be more intense in future,” says a study in the Journal of Cleaner Production. It warns that the combined impact of increasing demand, dwindling reserves, and geopolitical constraints could result in a substantial decline in the production and supply of chemical phosphorus fertilizer in the global market.

UNEP is involved in the Our Phosphorus Future project, coordinated by the UK Centre for Ecology and Hydrology (UK CEH). The project brings together experts from around the world to identify the key solutions for achieving global phosphorus security. 

“The scientific community is united on the need to address the global phosphorus challenge. As well as better farming and reducing and recycling wastes, food choice is a key solution. High meat consumption is a well-known driver of unsustainable nutrient use. The commitment of governments, consumers and industry in developing a more sustainable phosphorus future is key,” says Dr Bryan Spears, UK CEH.

Towards better management of phosphorus

UNEP and partners working on phosphorus pollution have come up with a number of priority actions that stand to address this complex problem:

  • Improve fertilizer and manure management, and minimize soil erosion, run-off and phosphorus (P) leaching to water; develop catchment management approaches to reduce P losses from agriculture and human wastes, with clear targets for reduction.
  • Develop infrastructure to recycle P from wastes; develop markets for recycled P products.
  • Optimize livestock and crop yields without additional P input and through better agricultural practices.
  • Minimize food waste to reduce P fertilizer demand and save money.
  • Reduce consumption of P intensive agricultural produce, (i.e., meat and dairy products): wider adoption of healthy diets with low to moderate amounts of meat and dairy could radically reduce demand for mineral P fertilizers and improve human health.
  • Raise awareness, transparency and political commitment to monitor, assess and act on P security issues.
  • Develop economic and regulatory policies that lower animal product consumption and waste production.

UN Environment

Continue Reading
Comments

Environment

GHG emissions from pyrolysis are nine times higher than in mechanical recycling

Avatar photo

Published

on

New study published today by Zero Waste Europe (ZWE) finds that greenhouse gas emissions from pyrolysis of plastic packaging are nine times higher than that of mechanical recycling. The “Climate impact of pyrolysis of waste plastic packaging in comparison with reuse and mechanical recycling” study is based on the estimated future recycling content targets in plastic packaging.

BACKGROUND: In the context of the revision of the Packaging and Packaging Waste Directive (PPWD), the European Commission (EC) assigned the independent consultancy Eunomia to consider the possible introduction of recycled content targets for plastic packaging by 2030. Based on the estimated future recycling content targets in plastic packaging, Eunomia determined to recycle quantities that must come as outputs from chemical recycling or mechanical recycling. Chemical recycling, in this case, means thermo-chemical (i.e. pyrolysis) recycling.

With this study, commissioned by ZWE and Rethink Plastic alliance to Öko-Institut, we calculated the impact of Eunomia’s proposed scenario regarding greenhouse gas (GHG) emissions and carbon loss. The study compares seven scenarios to meet the projected recycled content target by 2030, and puts them into perspective with the Paris Agreement commitments to limit global warming to 1.5 degrees Celsius. 

The study found that: 

  • Pyrolysis GHG emissions are nine times higher than those in mechanical recycling – in all scenarios considered over 75% of greenhouse gas emissions are attributable to chemical recycling;
  • Over half of the carbon content of plastic is lost in the pyrolysis process and has to be replaced by new plastic;
  • Mechanical recycling must be prioritised over pyrolysis wherever possible –  shifting 30% of the production attributed to chemical recycling by Eunomia to mechanical recycling would reduce GHG emissions by 31%;
  • Combining shit to more mechanical recycling together with a reduction of 20% of packaging would result in a 45% reduction of GHG emissions compared to the “chemical recycling scenario”.
  • Combining mechanical and chemical recycling to transform plastic waste into recyclate avoids the GHG emissions associated with the use of primary plastic.


ZWE’s Chemical Recycling and Plastic-to-Fuel Policy Officer, Lauriane Veillard says: “The revision of the PPWD should serve as a lever to make the packaging sector more circular and be in line with European climate commitments to limit Global Warming to 1.5 Degrees Celsius. There are other ways than pyrolysis for contact-sensitive materials. The climate impact of the managing pathways should be considered when setting targets. The revision is the opportunity to rethink the overall volume and the use we make of plastic packaging.“

With this in mind, ZWE urges the European Commission (EC) to consider the reports’ findings in the upcoming revision of the PPWD and to:

  • Introduce legal safeguards to prioritise mechanical recycling over pyrolysis;
  • Consider the climate impact of different recycling technologies when settings targets for recycled content;
  • Incentivise measures such as design for recycling and innovations along the plastic packaging value chain to facilitate mechanical recycling.

Lauriane Veillard adds: “If we are serious about achieving net-zero emission economy, mechanical recycling must be preferred over pyrolysis. However, this cannot be achieved unless legal safeguards as part of the P&PWD revision are introduced to prioritise mechanical processes for recycling packaging waste complemented with ambitious prevention and reuse targets”. 

Continue Reading

Environment

UN spotlights transformational potential of family farming for world food supply

Avatar photo

Published

on

María Fernanda Masís and her family are the owners of the hot sauces brand Xoloitzcuintle, named after their farm. Photo: UNEP

A Global Forum highlighting the UN’s Decade of Family Farming (UNDFF) got underway on Monday, aimed at identifying priority policies to boost support for family farmers and agricultural development worldwide.

The UNDFF runs through the end of 2028, and the Forum is being convened by the UN Food and Agriculture Organization (FAO) and the International Fund for Agricultural Development (IFAD).

FAO Director-General QU Dongyu, pointed out in his video address to the Global Forum’s opening that the world is moving backwards in its efforts to eliminate hunger and malnutrition.

Growing hunger

He said the number of people facing hunger increased in 2021, and it risks rising further especially among the most vulnerable, of which almost 80 percent live in rural areas and are small-scale, family farmers.

Family farmers around the world are also subject to the new challenges to food systems everywhere, created by the climate crisis, as well as conflict. The war in Ukraine has added further pressure, to already fragile agrifood systems, UN agencies said.

Mr. QU said the forum provides a way, firstly, to discuss “the unique role of family farmers in transforming our agrifood systems; two, take stock of achievements and challenges in the implementation of the UN Decade; and three, strengthen collaboration to ensure global food security, enhance livelihoods and achieve the Sustainable Development Goals”.

80 percent

Family farmers need to be at the centre of efforts to transform agrifood systems if we are to make real progress towards ending hunger,” Mr. Qu said.

He added that “family farming is the main form of agriculture in both developed and developing countries and is responsible for producing 80 percent of the world’s food,” in terms of value.

Family struggle

He noted that often, these family farmers struggle to feed their own families.

Since its launch three years ago, the UN Decade of Family Farming has been promoting integrated policies and investments to support family farmers, and FAO has been assisting national implementation of international tools and guidelines to strengthen family farming, Mr. Qu told the virtual forum.

He also noted that FAO hosts the Family Farming Knowledge Platform to facilitate the exchange of experience, innovation and specialised knowledge.

In addition, the FAO Strategic Framework 2022-31 includes a priority area of work aimed at better supporting small-scale food producers and delivering concrete results.

Push for the future

The main objectives of the Global Forum are to provide a general overview of policy trends and the relevance of family farming to the global push towards reaching the Sustainable Development Goals; highlight the main outcomes of the first three years of implementation; and re-orient the UNDFF agenda through the practical lessons learned so far.

Participants include representatives from national governments, governmental agencies, UN agencies, family farmers and their organizations, civil society organizations, as well as NGOs; the private sector, the media and academia.

Continue Reading

Environment

Microalgae promise abundant healthy food and feed in any environment

Avatar photo

Published

on

By Sofia Strodt

Feeding a growing world population that will reach 9.8 billion by 2050, according to United Nations forecasts, and the need to conserve natural resources for generations to come may seem conflicting at first.

But a solution, while not yet in sight, is certainly not out of reach. European scientists recently have developed an appetite for microalgae, also called phytoplankton, a sub-group of algae consisting of unicellular photosynthetic microorganisms.

Most people are familiar with the largest form of algae, kelp or seaweed. It can grow up to three metres long and, in some forms, is a well-known delicacy. The related species microalgae, which can be found in both seawater and freshwater, have gained attention in research due to their extraordinary properties.

These microscopic organisms can be used for animal feed, particularly in aquaculture, and various foods including pasta, vegan sausages, energy bars, bakery products and vegetable creams. 

Most commercial microalgae cultivation centres on the production of dried biomass such as chlorella or spirulina powder as a food providing considerable health benefits. Some microalgae strains not only accumulate up to 65–70% of protein but also are sustainable sources of omega-3 fatty acids – a substance that is conventionally derived mainly from fish and fish oil.

Additional bioactive compounds, such as vitamins B12, K or D, mean microalgae contain significant health properties, potentially reducing the risk of cancer and cardiovascular illness.

Desert algae

‘Microalgae can be cultivated in many different locations, under very different conditions,’ said Massimo Castellari, who is involved in the Horizon-funded ProFuture project aimed at scaling up microalgae production. ‘We can grow it in Iceland and in a desert climate.’  

The technologies for the intensive cultivation of microalgae have been in development since the 1950s.

Today, microalgae are cultivated in open- or closed-system photobioreactors, which are vessels designed to control biomass production. The closed-system version, while more expensive to build, offers more control over experimental parameters and less risk of contamination. 

The substance is by no means just a trendy food supplement. For example, in Chad, a landlocked, low-income country, the consumption of spirulina harvested from Lake Chad has significantly improved people’s nutritional status because spirulina is an excellent source of proteins and micronutrients.

On top of its nutritional value, microalgae offer climate benefits by sequestering carbon dioxide as well as economic advantages by using farming areas more efficiently and – through the use of non-arable land – expanding the possibility of biomass production. 

With a total of less than 57 000 tonnes cultivated in 2019, according to the UN Food and Agriculture Organization (FAO), production of microalgae is still very much in its early stages. By comparison, primary-crop output was 9.4 billion tonnes in 2019. 

Food inflation

Russia’s continuing war in Ukraine has highlighted just how vulnerable global food supply can be. Halts to Ukrainian grain exports and increases in energy prices have helped push food inflation around the world to record highs, with developing countries being hit disproportionately hard. In May this year, costs for food had risen by 42% compared with 2014-2016, the UN reported.  

Last year, as many as 828 million people were affected by hunger – an increase of roughly 46 million compared with 2020 and a surge of 150 million since the outbreak of the COVID-19 pandemic.

The FAO projects that some 670 million people will still face hunger by the end of the decade.   

While the benefits of cultivating organic microalgae for food and feed are substantial, market growth will require overcoming obstacles including a lack of automated production in the industry, according to Castellari, who works at the Institute of Agrifood Research and Technology in Barcelona, Spain.

‘The automatisation is still not completely implemented,’ he said. ‘There are small producers in Europe – many steps still involve manual labour. So they are still working on optimising the process.’ 

Processed biomass

The challenges go well beyond cultivation. With microalgae, biomass has to be processed, cleaned and dried before a usable powder can be obtained. The next step is to scale up production to drive down costs. 

In addition, there are regulatory challenges. Only a few species of microalgae are currently authorised in the European Union.

‘In Europe it’s still in a preliminary stage of development,’ said Castellari. ‘There are thousands of species of microalgae, but for food consumption or feed there are only seven species authorised.’ 

To gain knowledge about the possibilities to use other species, Castellari and his team are also investigating these other kinds of microalgae.

Due to these challenges, the portfolio of products containing microalgae remains limited today. But, if these hurdles can be overcome, the overall prospects for the microalgae industry are promising. Besides being a source of food and feed, the plant can be used for biofuels, cosmetics, fertiliser and health supplements.

Astaxanthin, a blood-red pigment extracted from algae, already has notable uses. A powerful antioxidant, astaxanthin can be found in seafood and is commonly used to colour shrimp. It is also sold in the form of pills as a food supplement.

Astaxanthin is thought to have potentially a positive impact on brain function, athletic performance and ageing skin, among other things.

Matteo Ballottari, associate professor of biotechnology at the University of Verona in Italy, helped start the European Research Council’s Horizon-funded project AstaOmega simultaneously to produce astaxanthin and omega-3 fatty acids in microalgae for aquaculture and human nutrition. 

Quality and quantity 

Most omega-3 supplements are derived from fish oils. This, however, raises sustainability concerns such as damage to marine ecosystems as a result of overfishing.  

‘There is more demand for eating high-quality foods, along with an awareness for incorporating omega-3 rich ingredients in our diets,’ Ballottari said. Responding to this trend while feeding a growing world population is ‘a big challenge,’ he said.

Meanwhile, on the astaxanthin front, the AstaOmega researchers have made progress. They have been able to obtain a new strain that can produce astaxanthin on its own, without needing to be “stressed”. This means the researchers don’t have to change production parameters such as light intensity, temperature or nitrates concentration. Also, extracting the substance has become easier, resulting in lower costs.  

Scientists agree that microalgae have the potential to change the ways in which we eat for the better.  

‘Microalgae can help us to increase the protein production within Europe to reduce our dependence on other countries,’ said Castellari of the ProFuture project.  

Research in this article was funded by the EU and it was originally published in Horizon, the EU Research and Innovation Magazine. 

Continue Reading

Publications

Latest

Southeast Asia3 hours ago

The so-called Indonesia-South Korea Special Strategic Partnership

In several attempts, people can find out there are repetition phrases that informally appeared from 5 years ago until now...

Environment5 hours ago

GHG emissions from pyrolysis are nine times higher than in mechanical recycling

New study published today by Zero Waste Europe (ZWE) finds that greenhouse gas emissions from pyrolysis of plastic packaging are...

Southeast Asia7 hours ago

U.S. Incentives for Maintaining a Presence in South East Asia, and the Nature of that Presence

Authors: Aqeel Ahmad Gichki & Adeel Ahmed* The US is the most prominent extra-regional actor in the Southeast Asian area....

Europe10 hours ago

What lies ahead for Meloni’s Italy

Not many would have predicted that 100 years after Benito Mussolini’s Black Shirts marched on Rome, a leader claiming lineage...

Economy16 hours ago

The Historic Day of Euro’s Downfall

The date August 22 should be remembered as the day of the euro’s “official” downfall. After a long period of...

Intelligence19 hours ago

Pakistani Intelligence Agencies ignite Tribal Conflicts in Pak-Afghan Region

According to the intelligence information, Pakistani intelligence community supported by some international rings want to once again spread dispute and...

South Asia24 hours ago

Changing Regional Security Paradigm: A Challenge to Kashmir and Options for Pakistan

The post-cold war world has witnessed shifts in international and regional security paradigms. Due to globalization, easy migrations, advanced technologies,...

Trending