Connect with us

Science & Technology

Bias, racism and lies: Facing up to the unwanted consequences of AI

Published

on

5G-enabled robot by China Telecom on display during ITU Telecom World 2019. ©ITU/Rowan Farrell

Powerful digital tools using artificial intelligence (AI) software are helping in the fight against COVID-19, and have the potential to improve the world in many other ways. However, as AI seeps into more areas of daily life, it’s becoming clear that its misuse can lead to serious harm, leading the UN to call for strong, international regulation of the technology.

The phrase “artificial intelligence” can conjure up images of machines that are able to think, and act, just like humans, independent of any oversight from actual, flesh and blood people. Movies versions of AI tend to feature super-intelligent machines attempting to overthrow humanity and conquer the world.

The reality is more prosaic, and tends to describe software that can solve problems, find patterns and, to a certain extent, “learn”. This is particularly useful when huge amounts of data need to be sorted and understood, and AI is already being used in a host of scenarios, particularly in the private sector.

Examples include chatbots able to conduct online correspondence; online shopping sites which learn how to predict what you might want to buy; and AI journalists writing sports and business articles (this story was, I can assure you, written by a human).

And, whilst a recent news story from Iran has revived fears about the use of killer robots (Iranian authorities have claimed that a “machine gun with AI” was used to assassinate the country’s most senior nuclear scientist), negative stories connected with AI, which have included exam grades incorrectly downgraded in the UK, an innocent man sent to jail in the USA, and personal data stolen worldwide, are more likely to concern its misuse, and old-fashioned human error.

Ahead of the launch of a UN guide to understanding the ethics of AI, here are five things you should know about the use of AI, its consequences, and how it can be improved.

1) The consequences of misuse can be devastating

In January, an African American man in the US state of Michigan, was arrested for a shoplifting crime he knew nothing about. He was taken into custody after being handcuffed outside his house in front of his family.

This is believed to be the first wrongful arrest of its kind: the police officers involved had trusted facial recognition AI to catch their man, but the tool hadn’t learned how to recognize the differences between black faces because the images used to train it had mostly been of white faces.

Luckily, it quickly became clear that he looked nothing like the suspect seen in a still taken from store security cameras, and he was released, although he spent several hours in jail.

And, in July, there was uproar in the UK, when the dreams of many students hoping to go to the university of their choice were dashed, when a computer programme was used to assess their grades (traditional exams had been cancelled, because of the COVID-19 pandemic).

To work out what the students would have got if they had sat exams, the programme took their existing grades, and also took into account the track record of their school over time. This ended up penalising bright students from minority and low-income neighbourhoods, who are more likely to go to schools that have, on the whole, lower average grades than schools attended by wealthier students

These examples show that, for AI tools to work properly, well-trained data scientists need to work with high quality data. Unfortunately, much of the data used to teach AI is currently taken from consumers around the world, often without their explicit consent: poorer countries often lack the ability to ensure that personal data are protected, or to protect their societies from the damaging cyber-attacks and misinformation that have grown since the COVID-19 pandemic.

2) Hate, division and lies are good for business

Many social media companies have come under fire from knowledgeable sceptics for using algorithms, powered by AI, to micro-target users, and send them tailored content that will reinforce their prejudices. The more inflammatory the content, the more chance that it will be consumed and shared.

The reason that these companies are happy to “push” socially divisive, polarizing content to their users, is that it increases the likelihood that they will stay longer on the platform, which keeps their advertisers happy, and boosts their profits.

This has boosted the popularity of extremist, hate-filled postings, spread by groups that would otherwise be little-known fringe outfits. During the COVID-19 pandemic, it has also led to the dissemination of dangerous misinformation about the virus, potentially leading to more people becoming infected, many experts say.

3) Global inequality is mirrored online

There is strong evidence to suggest that AI is playing a role in making the world more unequal, and is benefiting a small proportion of people. For example, more than three-quarters of all new digital innovation and patents are produced by just 200 firms. Out of the 15 biggest digital platforms we use, 11 are from the US, whilst the rest are Chinese.

This means that AI tools are mainly designed by developers in the West. In fact, these developers are overwhelmingly white men, who also account for the vast majority of authors on AI topics. The case of the wrongful arrest in Michigan is just one example of the dangers posed by a lack of diversity in this highly important field.

It also means that, by 2030, North America and China are expected to get the lion’s share of the economic gains, expected to be worth trillions of dollars, that AI is predicted to generate.

4)The potential benefits are enormous

This is not to say that AI should be used less: innovations using the technology are immensely useful to society, as we have seen during the pandemic.

Governments all around the world have turned to digital solutions to new problems, from contact-tracing apps, to tele-medicine and drugs delivered by drones, and, in order to track the worldwide spread of COVID-19, AI has been employed to trawl through vast stores of data derived from our interactions on social media and online.

The benefits go far beyond the pandemic, though: AI can help in the fight against the climate crisis, powering models that could help restore ecosystems and habitats, and slow biodiversity loss; and save lives by helping humanitarian organizations to better direct their resources where they are most needed.

The problem is that AI tools are being developed so rapidly that neither designers, corporate shareholders nor governments have had time to consider the potential pitfalls of these dazzling new technologies.

5) We need to agree on international AI regulation

For these reasons, the UN education, science and culture agency, UNESCO, is consulting a wide range of groups, including representatives from civil society, the private sector, and the general public, in order to set international AI standards, and ensure that the technology has a strong ethical base, which encompasses the rule of law, and the promotion of human rights.

Important areas that need to be considered include the importance of bringing more diversity in the field of data science to reduce bias, and racial and gender stereotyping; the appropriate use of AI in judicial systems to make them fairer as well as more efficient; and finding ways to ensure that the benefits of the technology are spread amongst as many people as possible.

Continue Reading
Comments

Science & Technology

From nanotechnology to solar power: Solutions to drought

Published

on

While the drought has intensified in Iran and the country is facing water stress, various solutions from the use of solar power plants to the expansion of watershed management and nanotechnology are offered by experts and officials.

Iran is located in an arid and semi-arid region, and Iranians have long sought to make the most of water.

In recent years, the drought has intensified making water resources fragile and it can be said that we have reached water bankruptcy in Iran.

However, water stress will continue this fall (September 23-December 21), and the season is expected to be relatively hot and short of rain, according to Ahad Vazifeh, head of the national center for drought and crisis management.

In such a situation, officials and experts propose various solutions for optimal water management.

Alireza Qazizadeh, a water and environment expert, referring to 80 percent of the arid regions in the country, said that “Iran has one percent of the earth’s area and receives only 36 percent of renewable resources.

The country receives 250 mm of rainfall annually, which is about 400 billion cubic meters, considering 70 percent evaporation, there is only 130 billion cubic meters of renewable water and 13 billion cubic meters of input from border waters.”

Referring to 800 ml of average rainfall and 700 mm of global evaporation, he noted that 70 percent of rainfall in Iran occurs in only 25 percent of the country and only 25 percent rains in irrigation seasons.

Pointing to the need for 113 billion cubic meters of water in the current year (began on March 21), he stated that “of this amount, 102 billion is projected for agricultural use, 7 percent for drinking and 2 percent for industry, and at this point water stress occurs.

In 2001, 5.5 billion cubic meters of underground resources were withdrawn annually, and if we consider this amount as 20 years from that year until now, it means that we have withdrawn an equivalent of one year of water consumption from non-renewable resources, which is alarming.”

The use of unconventional water sources can be effective in controlling drought, such as rainwater or river runoff, desalinated water, municipal wastewater that can be reused by treatment, he concluded.

Rasoul Sarraf, the Faculty of Materials at Shahid Modarres University, suggests a different solution and states that “To solve ease water stress, we have no choice but to use nanotechnology and solar power plants.

Pointing to the sun as the main condition for solar power plant, and while pointing to 300 sunny days in the country, he said that at the Paris Convention, Iran was required to reduce emissions by 4 percent definitively and 8 percent conditionally, which will only be achieved by using solar power plants.

Hamidreza Zakizadeh, deputy director of watershed management at Tehran’s Department of Natural Resources and Watershed Management, believes that watershed management can at least reduce the effects of drought by managing floods and extracting water for farmers.

Amir Abbas Ahmadi, head of habitats and regional affairs of Tehran Department of Environment, also referring to the severe drought in Tehran, pointed to the need to develop a comprehensive plan for water management and said that it is necessary to cooperate with several responsible bodies and develop a comprehensive plan to control the situation.

He also emphasizes the need to control migration to the capital, construction, and the implementation of the Comprehensive Plan of Tehran city.

While various solutions are proposed by officials and experts to manage water and deal with drought, it is necessary for the related organizations to work together to manage the current situation.

Mohammad Reza Espahbod, an expert in groundwater resources, also suggested that while the country is dealing with severe drought due to improper withdrawal of groundwater and low rainfall, karst water resources can supply the whole water needed by the country, only if managed.

Iran is the fifth country in the world in terms of karst water resources, he stated.

Qanats can also come efficient to contain water scarcity due to relatively low cost, low evaporation rates, and not requiring technical knowledge, moreover, they proved sustainable being used in perpetuity without posing any damages to the environment.

According to the Ministry of Energy, about 36,300 qanats have been identified in Iran, which has been saturated with water for over 2,000 years.

In recent years, 3,800 qanats have been rehabilitated through watershed and aquifer management, and people who had migrated due to water scarcity have returned to their homes.

Water resources shrinking

Renewable water resources have decreased by 30 percent over the last four decades, while Iran’s population has increased by about 2.5 times, Qasem Taqizadeh, deputy minister of energy, said in June.

The current water year (started on September 23, 2020) has received the lowest rain in the past 52 years, so climate change and Iran’s arid region should become a common belief at all levels, he lamented.

A recent report by Nature Scientific Journal on Iran’s water crisis indicates that from 2002 to 2015, over 74 billion cubic meters have been extracted from aquifers, which is unprecedented and its revival takes thousands of years along with urgent action.

Three Iranian scientists studied 30 basins in the country and realized that the rate of aquifer depletion over a 14-year period has been about 74 billion cubic meters, which is recently published in Nature Scientific Journal.

Also, over-harvesting in 77 percent of Iran has led to more land subsidence and soil salinity. Research and statistics show that the average overdraft from the country’s aquifers was about 5.2 billion cubic meters per year.

Mohammad Darvish, head of the environment group in the UNESCO Chair on Social Health, has said that the situation of groundwater resources is worrisome.

From our partner Tehran Times

Continue Reading

Science & Technology

Technology and crime: A never-ending cat-and-mouse game

Published

on

Is technology a good or bad thing? It depends on who you ask, as it is more about the way technology is used. Afterall, technology can be used by criminals but can also be used to catch criminals, creating a fascinating cat-and-mouse game.

Countless ways technology can be used for evil

The first spear was used to improve hunting and to defend from attacking beasts. However, it was also soon used against other humans; nuclear power is used to produce energy, but it was also used to annihilate whole cities. Looking at today’s news, we’ve learned that cryptocurrencies could be (and are) used as the preferred form of payments of ransomware since they provide an anonymous, reliable, and fast payment method for cybercriminals.

Similarly, secure phones are providing criminal rings with a fast and easy way to coordinate their rogue activities. The list could go on. Ultimately, all technological advancements can be used for good or evil. Indeed, technology is not inherently bad or good, it is its usage that makes the difference. After all, spears served well in preventing the extinction of humankind, nuclear power is used to generate energy, cryptocurrency is a promise to democratize finance, and mobile phones are the device of choice of billions of people daily (you too are probably reading this piece on a mobile).

However, what is new with respect to the past (recent and distant) is that technology is nowadays much more widespread, pervasive, and easier to manipulate than it was some time ago. Indeed, not all of us are experts in nuclear material, or willing and capable of effectively throwing a spear at someone else. But each of us is surrounded by, and uses, technology, with a sizeable part of users also capable of modifying that technology to better serve their purposes (think of computer scientists, programmers, coding kids – technology democratization).

This huge reservoir of people that are capable of using technology in a way that is different from what it was devised for, is not made of just ethical hackers: there can be black hats as well (that is, technology experts supporting evil usages of such technology). In technical terms, the attack vector and the security perimeter have dramatically expanded, leading to a scenario where technology can be easily exploited for rogue purposes by large cohorts of people that can attack some of the many assets that are nowadays vulnerable – the cybersecurity domain provides the best example for the depicted scenario. 

Fast-paced innovation and unprecedented threats

What is more, is that technology developments will not stop. On the contrary, we are experiencing an exponentially fast pace in technology innovation, that resolves in less time between technology innovations cycles that, while improving our way of living, also pave the way for novel, unprecedented threats to materialize. For instance, the advent of quantum computers will make the majority of current encryption and digital signature methods useless and what was encrypted and signed in the past, exposed.

The tension between legitimate and illegitimate usages of technology is also heating up. For instance, there are discussions in the US and the EU about the need for the provider of ICT services to grant the decryption keys of future novel secure applications to law enforcement agencies should the need arise –a debatable measure.

However, technology is the very weapon we need to fight crime. Think of the use of Terahertz technology to discover the smuggling of drugs and explosives – the very same technology Qatar      has successfully employed. Or the infiltration of mobile phone crime rings by law enforcement operators via high tech, ethical hacking (as it was the case for the EncroChat operation). And even if crime has shown the capability to infiltrate any sector of society, such as sports, where money can be laundered over digital networks and matches can be rigged and coordinated via chats, technology can help spot the anomalies of money transfer, and data science can spot anomalies in matches, and can therefore thwart such a crime – a recent United Nations-sponsored event, participated by the International Centre for Sport Security (ICSS) Qatar and the College of Science and Engineering (CSE) at Hamad Bin Khalifa University (HBKU) discussed      the cited topic. In the end, the very same technology that is used by criminals is also used to fight crime itself.

Don’t get left behind

In the above-depicted cybersecurity cat-and-mouse game, the loser is the party that does not update its tools, does not plan, and does not evolve.

In particular, cybersecurity can help a country such as Qatar over two strategic dimensions: to better prevent/detect/react to the criminal usage of technology, as well as to advance robustly toward a knowledge-based economy and reinforce the country’s presence in the segment of high value-added services and products to fight crime.

In this context, a safe bet is to invest in education, for both governments and private citizens. On the one hand, only an educated workforce would be able to conceptualize/design/implement advanced cybersecurity tools and frameworks, as well as strategically frame the fight against crime. On the other hand, the same well-educated workforce will be able to spur innovation, create start-ups, produce novel high-skill products, and diversify the economy. 

In this context, Qatar enjoys a head start, thanks to its huge investment in education over the last 20 years. In particular, at HBKU – part of Qatar Foundation – where we have been educating future generations. 

CSE engages and leads in research disciplines of national and global importance. The college’s speciality divisions are firmly committed to excellence in graduate teaching and training of highly qualified students with entrepreneurial  capacity.

For instance, the MS in Cybersecurity offered by CSE touches on the foundations of cryptocurrencies, while the PhD in Computer Science and Engineering, offering several majors (including cybersecurity), prepares future high-level decision-makers, researchers, and entrepreneurs in the ICT domain  – the leaders who will be driving the digitalization of the economy and leading the techno-fight against crime. 

Continue Reading

Science & Technology

Enhancing poverty measurement through big data

Published

on

Authors: Jasmina Ernst and Ruhimat Soerakoesoemah*

Ending poverty in all its forms is the first of the 17 Sustainable Development Goals (SDGs). While significant progress to reduce poverty had been made at the global and regional levels by 2019, the Covid-19 pandemic has partly reversed this trend. A significant share of the population in South-East Asia still lacks access to basic needs such as health services, proper nutrition and housing, causing many children to suffer from malnutrition and treatable illnesses. 

Delivering on the commitments of the 2030 Agenda for Sustainable Development and leaving no one behind requires monitoring of the SDG implementation trends. At the country level, national statistics offices (NSOs) are generally responsible for SDG data collection and reporting, using traditional data sources such as surveys, census and administrative data. However, as the availability of data for almost half of the SDG indicators (105 of 231) in South-East Asia is insufficient, NSOs are exploring alternative sources and methods, such as big data and machine learning, to address the data gaps. Currently, earth observation and mobile phone data receive most attention in the domain of poverty reporting. Both data sources can significantly reduce the cost of reporting, as the data collection is less time and resource intensive than for conventional data.

The NSOs of Thailand and the Philippines, with support from the Asian Development Bank, conducted a feasibility study on the use of earth observation data to predict poverty levels. In the study, an algorithm, convolutional neural nets, was pretrained on an ImageNet database to detect simple low-level features in images such as lines or curves. Following a transfer learning technique, the algorithm was then trained to predict the intensity of night lights from features in corresponding daytime satellite images. Afterwards income-based poverty levels were estimated using the same features that were found to predict night light intensity combined with nationwide survey data, register-based data, and geospatial information. The resulting machine learning models yielded an accuracy of up to 94 per cent in predicting the poverty categories of satellite images. Despite promising study results, scaling up the models and integrating big data and machine learning for poverty statistics and SDG reporting still face many challenges. Thus, NSOs need support to train their staff, gain continuous access to new datasets and expand their digital infrastructure.

Some support is available to NSOs for big data integration. The UN Committee of Experts on Big Data and Data Science for Official Statistics (UN-CEBD) oversees several task teams, including the UN Global Platform which has launched a cloud-service ecosystem to facilitate international collaboration with respect to big data. Two additional task teams focus on Big Data for the SDGs and Earth Observation data, providing technical guidance and trainings to NSOs. At the regional level, the weekly ESCAP Stats Café series provides a knowledge sharing platform for experiences related to the impact of COVID-19 on national statistical systems. The Stats Café includes multiple sessions dedicated to the use of alternative data sources for official statistics and the SDGs. Additionally, ESCAP has published policy briefs on the region’s practices in using non-traditional data sources for official statistics.

Mobile phone data can also be used to understand socioeconomic conditions in the absence of traditional statistics and to provide greater granularity and frequency for existing estimates. Call detail records coupled with airtime credit purchases, for instance, could be used to infer economic density, wealth or poverty levels, and to measure food consumption. An example can be found in poverty estimates for Vanuatu based on education, household characteristics and expenditure. These were generated by Pulse Lab Jakarta – a joint innovation facility associated with UN Global Pulse and the government of Indonesia.

Access to mobile phone data, however, remains a challenge. It requires long negotiations with mobile network operators, finding the most suitable data access model, ensuring data privacy and security, training the NSO staff and securing dedicated resources. The UN-CEBD – through the Task Team on Mobile Phone Data and ESCAP – supports NSOs in accessing and using mobile phone data through workshops, guides and the sharing of country experiences. BPS Statistics Indonesia, the Indonesian NSO, is exploring this data source for reporting on four SDG indicators and has been leading the regional efforts in South-East Asia. While several other NSOs in Asia and the Pacific can access mobile phone data or are negotiating access with mobile network operators, none of them have integrated it into poverty reporting.

As the interest and experience in the use of mobile phone data, satellite imagery and other alternative data sources for SDGs is growing among many South-East Asian NSOs, so is the need for training and capacity-building. Continuous knowledge exchange and collaboration is the best long-term strategy for NSOs and government agencies to track and alleviate poverty, and to measure the other 16 SDGs.

*Ruhimat Soerakoesoemah, Head, Sub-Regional Office for South-East Asia

UNESCAP

Continue Reading

Publications

Latest

Southeast Asia19 mins ago

The new AUKUS partnership comes at the cost of sidelining France, a key Indo-Pacific player

Here is my quick take on the new AUKUS security partnership announced on Wednesday (September 15), by the leaders of...

Europe2 hours ago

Germany and its Neo-imperial quest

In January 2021, eight months ago, when rumours about the possibility of appointment of Christian Schmidt as the High Representative...

Health & Wellness4 hours ago

Moderna vs. Pfizer: Two Recent Studies Show Moderna to Be The More Effective One

The first study was published by medRxiv “The Preprint Server for Health Sciences” on August 9th, and compared (on 25,589...

Middle East6 hours ago

After 10 years of war in Syria, siege tactics still threaten civilians

The future for Syria’s people is “increasingly bleak”, UN-appointed rights experts said on Tuesday, highlighting escalating conflict in several areas...

South Asia9 hours ago

Misjudgements in India’s Afghan policy

India’s Afghan policy has always been obsessed with the desire to deny Pakistan the “strategic depth” that Pakistan, according to...

Africa Today10 hours ago

Republic of Korea offers support for smallholder farmers in Mozambique

The Korea International Cooperation Agency (KOICA) donated US$5.7 million through the World Food Programme (WFP) for a project to support...

Environment12 hours ago

Global Plastic Action Partnership Making an Impact in Fighting Plastic Pollution

The Global Plastic Action Partnership (GPAP) released its second annual impact report, which highlights strides made over the last two...

Trending