Connect with us

Science & Technology

The Technological Revolution in China and the USA: What About Europe and Eurasia?

Avatar photo

Published

on

Two articles from the South China Morning Post were really interesting this week:

“US needs a hi-tech revolution to combat China,” says General Mark Milley.

  • Military must adapt to ‘fundamental change’ under way in the character of war
  • Joint Chiefs of Staff head wants smaller, more capable forces which fully embrace robotics and artificial intelligence

The US military will need to fully embrace robotics and artificial intelligence if it is to maintain superiority over China, according to the Pentagon’s top general.

Joint Chiefs Chairman General Mark Milley also said smaller, more capable forces armed with long-range missiles would need to be posted more widely around Asia to hem in the top US adversary.

“We are in the middle of a fundamental change in the character of war,” he told the Defence Forum Washington online symposium at the US Naval Institute on Thursday.

And while the USA is still talking about a technological revolution, China reports another success in quantum computing and AI:

“China claims quantum computing lead with Jiuzhang photon test, creating machine ‘one trillion times faster’ than next best supercomputer”

  • Researchers said their prototype took a little over three minutes to complete a task that would take the world’s fastest conventional machine 600 million years.
  • Results put the country firmly at the forefront of the field, lead scientist says

Chinese physicists say they have built a quantum computer one trillion times faster than the most powerful supercomputer, with potential for some real-life applications.

The times are over to claim that China could only copy technology from the West and would get all its successes from economic espionage. Graham Allison once said that China is not doing Research and Development (R&D),, but RDT (Research &Development &Theft). While this is correct, one should not forget that not only China harmed intellectual property rights, copied technologies and had economic espionage—the West and the USA are also doing this as became last known in the NSA scandal. And scholars and knowledgeable people of economic history know that these are not new symptoms of the last decade. Just a look at the history of the atomic bomb, the Manhattan Project, how Russia and China got their nuclear technology shows this as the most obvious and best-known example. It should also not be forgotten that globalization pushed by the West also made it possible for China to hire engineers, scientists, experts, as advisers and even managers for Chinese companies. As Trump said: I don’t blame the Chinese that they took advantage, but the Western politicians and Davos elites who were giving the Chinese the advantages. In this sense Trump was correct.

But we don’t want to engage in a moral discussion. More important is how the CCP and the West see technological progress. While the Germans and Europeans are complaining that the USA and China would steal their technology, it should be clear that most technologies “stolen” from then become more and more outdated and that Europe and Germany really has a problem if it is about new technologies. The technological gap – civil and militarily- between the Europeans and the USA and China is too obvious. There is not too much to “steal” anymore, just the opposite. Germany and Europe might come in the situation that they have to copy or steal from China or the USA just to get access to the new technologies. And without a military-industrial complex, joint venture capital, a Silicon Valley, or EU hi-tech fonds, nothing will change.

The EU has now at least decided on a new Green deal, but it is questionable whether the EU budget and the ECB-funded grants and loans have a uniform thrust in the direction of new technologies and analog and digital infrastructure construction and not to fill any financial holes in the state budgets. Long story short message.: A European hi-tech investment fund or some sort of industrial policy would be needed that promotes new high-tech technologies and brings them to a breakthrough so that the technological gap between Europe and the United States and China can be closed.

A European investment fund that promotes new industries and start-ups, as well as existing national champions nationally and European, but as a new EU Los Alamos and Apollo project. A kind of Apollo project from cloud computing, quantum computing, AI, blockchain technology, robotics to nano and biotechnology and also such new developments in Silicon Valley as artificial meat. New ecological technologies would have to be also addressed, which can already be part of the current New Green Deal of the EU. ..Trillions of savings are in the bank accounts with zero interest rate policy and are not invested in productive new technologies, but are continuously decreasing. Bringing this dead, unproductive capital to a productive utilization is the idea of Walter Kohl in his book “Which future do we want?”(Welche Zukunft wollen wir?)”.

A European Silk Road Marco Polo 2.0 would be needed, a project that in addition to the systematic development of a high-tech industry in research. Development and production also remove the investment backlog in the analog and digital infrastructure in Europe, which are also prerequisites for the use of these new technologies, leaving the young generation with a well-functioning infrastructure for the future as the legacy of our generation, a common interest project that unites today’s Europe, a vision and concrete material advantages, as well as jobs and economic growth then generated in a multiplier effect. On the one hand as a counterpoint to China’s New Silk Road, a European infrastructure project that renews Europe’s promise of prosperity, makes it concrete and creates optimism again. Especially since every European also wonders: Why are the Chinese building a train route from Budapest to Belgrade and not the Europeans? It is also about getting the Chinese backyard in the form of the 16 plus 1 group back by connecting European non-EU members. The first serious supporters have already appeared. On the one hand, the FAZ already headlined: “Why not a European Silk Road?” The idea is now gaining further supporters from three research institutes, albeit in the still rudimentary form of a high-speed long-distance train network for Europe – here from the Freitag newspaper:

“A recent proposal from the Düsseldorf Institute for Macroeconomics, the Austrian Economic Institute and the French Institute OFCE has shown that there is another way. In view of the EU negotiations on a reconstruction fund to deal with the Corona crisis, they are calling for Europe to build a network of four super-fast train lines that connect east and west, north and south. A route should run from Lisbon via Paris, Berlin, Copenhagen to Helsinki. At an average train speed of 250 to 350 kilometres per hour, the travel time from Berlin to Paris would be reduced to four hours. Those who travel the distance by plane today take longer. The researchers calculated that simply switching passengers from planes to trains would reduce CO2 emissions by four to five percent. Freight traffic would also be shifted to the new rail. The 18,250-kilometer network would cost 1.1 trillion euros – an amount roughly double the 500 billion earmarked for the EU’s reconstruction fund. But it would be worth it. What would a movement from below do to effectively to counter global warming? It would network across Europe to promote such a project. It is so exemplary. The politicians are waving away? This may show that our free elections are not as free as they seem. The movement from below would combine their struggle for an ecologically effective large-scale project with the struggle for an electoral system that does not, of all things, spare the economy – that is, leaves it to capital, on which everything else depends. The chances of getting a lot of approval would be great, also because the institutes propose even more. They consider the superfast train network to be the core of a “European silk road”, which would also include new ports. The continent’s borders, the Balkans, the Caucasus, would be better connected to the industrial regions in the west. The researchers expect 3.5 percent economic growth and two million new jobs.”

Furthermore, in addition to the civil infrastructure, military use for NATO should also be considered, which, like ecological aspects and more, should include the ecological promotion of regional public transport networks to overcome the urban-rural divide in the analog and digital infrastructure, in order to create a holistic concept for the greatest possible benefit. The whole thing should also be thought of with future orientation in matters of Eurasia and the USA. It is also interesting to see that in a joint guest article in the FAZ, the chairman of the Atlantik-Brücke and former Vice-Chancellor Sigmar Gabriel and John B. Emerson. Former American Ambassador to Germany and Chairman of the American Council on Germany propose a future transatlantic agenda, among this some kind of European or even Eurasian Silkroad: as mentioned as “Conception of a transatlantic infrastructure initiative with Africa and the Eurasian area as a democratic, fair and transparent alternative to China’s “New Silk Road.” Would there be any space and connection in a transatlantic Eurasian Silkroad for Russia?

From our partner RIAC

Political Scientist (diploma) , Open Source Analyst, Chinese-German translator, based in Munich, Germany

Continue Reading
Comments

Science & Technology

New discoveries and scientific advances from around the world

Avatar photo

Published

on

(NASA, ESA, CSA, STScI)

In July 2022 the National Aeronautics and Space Administration (NASA) announced the first batch of colour photos taken by the James Webb Space Telescope more than six months after its launch. In August the Webb telescope captured the first clear evidence of carbon dioxide in the atmosphere of an extrasolar planet (exoplanet). In September, the Webb telescope released its first infrared image of Mars, acquiring atmospheric data for the entire planet.

After many delays, the large lunar exploration launcher Space Launch System carrying the Orion spacecraft was launched from the Kennedy Space Center in Florida in the early morning of 16 November 2022, thus beginning Artemis 1’s unmanned flight around the Moon. After completing a 25.5-day unmanned mission around our satellite, the Orion spacecraft landed on the Pacific Ocean near Baja California, Mexico, on 11 December, thus ending the first mission of the Neo Artemis lunar landing programme – a high-risk return for an Earth test related to human travel around the moon that will take place in the coming years. This is an important step for the United States regarding the return to the moon after the Apollo 17 landing on the moon 51 years ago.

The US Dark Energy Spectroscopic Instrument (DESI) project has broken the record for all previous surveys of galaxies in 3D vision, creating the largest and most detailed map of the universe ever compiled. US astrophysicists have set the most precise constraints to date on the composition and evolution of the universe. NASA has also achieved the first “holographic teleportation” of humans from Earth to space.

In terms of commercial space tourism, the first “crew” purely composed of private individuals arrived at the International Space Station on 9 April 2022. In May a research team from the University of Florida successfully cultivated plants on lunar soil for the first time.

A Washington State University study found that mixing a small amount of simulated crushed Martian rock with a titanium alloy in the 3D printing process made the material stronger and higher-performing, and could be used to make instruments and carrier rocket components for more detailed exploration of the red planet. The breakthrough could make future space travel cheaper and more practical.

NASA has stated that the Exoplanet Archive has accepted 65 new exoplanets and their total number has exceeded the five thousand threshold. Furthermore, NASA’s Jet Propulsion Laboratory is developing a new project that will enable robots having the size of smartphones to “navigate” the cosmic oceans in search of signs of life.

Also on the Russian side – at least before the outbreak of the well-known and supposedly ongoing crisis – the country will complete twenty-two spacecraft launch missions, including two manned Soyuz and two Progress cargo missions to the International Space Station. The originally planned mission to launch the Luna 25 probe in September was postponed to 2023 because the performance of the Doppler velocity and distance sensors used by the probe did not meet requirements. It is thought, however, that the reason lies in the lack of capital planned and now being used on the war front.

Russia’s missile and aircraft industry – of great tradition and authority – is the sector most severely feared by the United States and the West. Due to sanctions, both Boeing and Airbus announced – even before the Ukrainian crisis – that they would no longer sell aircraft, spare parts and related services to Russia. This severely jeopardises the survival and development of the Russian aviation industry. To this end, focusing on self-sufficiency, Russia urgently formulated plans to produce Sukhoi Super 100, Tu-214 and MS-21 passenger aircraft and rebuilt the aviation industry’s production system. The first batch of MC-21 airliners with domestic components is expected to be delivered in 2024, except for unforeseen circumstances.

In July 2022 the Obyedinyonnaya Aviastroitelnaya Korporatsiya (United Aeronautical Corporation) declared that Russia would fulfil all its obligations vis-à-vis its partners regarding the International Space Station, but decided to withdraw from the space station after 2024. Later an orbital station will begin to form under the aforementioned OAK – a grouping of Russian aerospace companies created in 2006 at the Russian government’s initiative. In October Russia used the Soyuz-2.1b carrier rocket to successfully launch the first satellite of the Sphere/Scythian-D project. A demonstration satellite of the future Scythian system technology for broadband Internet access, part of the Sphere satellite constellation. The project of the Sphere group of satellites plans to launch 600 satellites to provide Internet services on the ground, similar to the US Space Exploration Technology Corporation‘s Starlink system.

On the British side, too, there is no shortage of initiatives such as mapping the skies of the Northern hemisphere to solve the mystery of the formation of the first quasars. In 2022, British scientists focused on the remotest depths of the universe making a number of important discoveries.

Astronomers from Durham University, in collaboration with an international team of scientists, used the pan-European Low Frequency Array (LOFAR) radio telescope to map more than a quarter of the Northern sky, discovering some 4.4 million objects billions of light years away, including one hundred thousand previously unknown celestial bodies.

Scientists from the University of Sussex have solved a black hole paradox previously proposed by Stephen Hawking, proving that black holes really have “quantum hair” properties. In quantum theory, the state of matter that collapses and forms the black hole continues to influence the external state of the black hole itself, albeit in a way that is compatible with current experimental limits. This is the meaning of “quantum hair”.

The mystery of the formation of the first quasars that has bedevilled astronomers for twenty years has finally been solved: scientists from the University of Portsmouth have discovered that the first quasars formed naturally in the violent turbulent conditions of the rare gas layer in the early universe. The research also overturns years of thinking about the origin of the universe’s first immense black hole discovered so far.

The search for signs of life on exoplanets, however, has always been one of the goals of space exploration: the University of Exeter has used the Webb telescope to take images of an exoplanet directly from space for the first time, which will help to better study the chemistry of these planets. Scientists from the Natural History Museum in the UK have also found extraterrestrial water in a meteorite that fell in the UK.

Scientists from Durham University used supercomputers to simulate the possible impact of a collision between the Earth and a protoplanet, concluding that the moon could have formed in a matter of hours rather than thousands of years.

In 2022 the German federal government began formulating a new space strategy: one of the key points is Earth observation in the context of climate change, including the prevention and removal of space debris. The European Space Agency (ESA) announced the European Space Programme for the next three years; it will raise 16.9 billion euros, and will give priority to supporting an Internet satellite constellation in low orbit.

In aerospace research Germany successfully tested the upper stage of the European Ariane 6 launch vehicle for the first time. The German Offshore Spaceport Alliance’s plans to build a space launch platform continue to move forward. The first hyperspectral Environmental Mapping and Analysis Program (EnMAP) satellite developed and built in Germany was launched successfully. In terms of specific technologies, Germany has developed a fully integrated W3C mobile satellite control system on a standard laptop, which can control satellites without relying on any infrastructure other than antennas. It has developed a new generation of laser reflectors for satellites, which can operate without electricity. It has also developed a high-powered single-mode Vertical Cavity Surface Emitting Laser (VSEL) for use in space altitude gyroscopes.

Again in 2022 Germany – together with partners on the International Space Station – performed a simulation of capturing a small satellite with another satellite. Germany successfully tested the component structure, measurement methods and evaluation algorithms of hypersonic flight technology through a flight test. The third stage of the rocket with the payload reached a flight speed of about 9,000 kilometres per hour, corresponding to a Mach number above 7, for about 120 seconds. German and Spanish missile manufacturers are spearheading the development of a new hypersonic defence interceptor that in the future will be integrated into a high-performing system capable of early warning, tracking and interception of air threats, including ballistic missiles and hypersonic vehicles.

In aeronautics research, the German Aerospace Centre uses interdisciplinary methods to continuously improve the level of automation, digitisation and virtualisation. For example, through the Remote Tower Center project, the feasibility of a control centre providing air traffic services for multiple airports has been verified. A series of research and development activities around pure electricity, hydrogen fuel cells and Sustainable Aviation Fuel (SAF) has been promoted. For the first time, the entire digital development chain of throttle valves, from design to production and testing, has been computer-simulated.

With specific referenced to SAF, it must be said that aviation currently accounts for around 2-3% of global CO2 emissions. Since air travels are expected to double over the next fifteen years, these figures will grow quickly. The International Air Transport Association (IATA) has already taken steps in the right direction by committing to achieving zero emission growth from 2020 onwards and zero net carbon emissions from global aviation operations by the end of 2050.

While many solutions such as the aforementioned electrified aviation are still in the early stages of development, the industry needs solutions to reduce direct carbon emissions resulting from flights. In the meantime, Finland’s Neste MY Sustainable Aviation Fue is leading the way with a current solution that is commercially available and in use worldwide. SAF is a direct and cleaner substitute for fossil jet fuel and reduces greenhouse gas (GHG) emissions by up to 80% compared to fossil jet fuel.

Neste currently produces 100,000 tonnes of SAF and production will increase up to 1.5 million tonnes (about 1.875 billion litres) per year by the end of 2023. At the same time, Neste is forging bold new partnerships to increase the global availability of SAF.

Continue Reading

Science & Technology

Deployment of 5G Technology: Scrutinizing the Potential Menace & Its Repercussions globally

Avatar photo

Published

on

5G, or fifth generation, is the latest generation of mobile telecommunications technology. It promises faster internet speeds, lower latency, and greater capacity than previous generations of mobile networks. 5G technology is designed to support a wide range of new and emerging applications, including the Internet of Things (IoT), autonomous vehicles, and virtual and augmented reality. The introduction of 5G to the world is a significant development in the field of telecommunications. It is expected to have a major impact on various sectors such as healthcare, transportation, manufacturing, and entertainment. 5G networks will enable new technologies like self-driving cars, remote surgery, and virtual reality to function more smoothly and efficiently.

It is based on a number of new technologies, such as software-defined networks, network slicing, and millimetre waves, which allow for faster data transfer and a greater number of connected devices. This will allow for more efficient use of network resources and support a wider range of applications. Many countries and mobile network operators are in the process of rolling out 5G networks, and the number of 5G-enabled devices is expected to grow rapidly. However, the deployment of 5G networks is a complex and ongoing process, and there are still many technical and regulatory challenges that needs to be addressed.

Concerns & Impact:

In terms of cybersecurity, 5G networks have the potential to be more vulnerable to cyber-attacks than previous generations of mobile networks. The increased complexity of 5G networks and the use of new technologies, such as software-defined networks, could make them more difficult to secure. As the number of devices connected to 5G networks increases, so does the attack surface for cybercriminals. In terms of privacy, with the deployment of 5G networks, the amount of data that is collected and stored by mobile network operators will increase, raising concerns about the protection of personal information. 5G networks will enable new technologies, like self-driving cars, remote surgery, and virtual reality, which will generate a large amount of data. Ensuring the security and privacy of this data will be a major challenge. Also, in terms of supply chain security, the deployment of 5G networks requires a large number of components and systems from different vendors, which makes it more difficult to ensure the security of the network. There are concerns that these components, if not properly secured, could be used by malicious actors to compromise the network. The deployment of 5G networks could also lead to radiofrequency interference with existing technologies such as weather radar, satellite communication, and GPS systems, aviation navigation, and scientific research. Even, countries that are deploying 5G networks are dependent on foreign vendors for the equipment and technology needed to build and operate these networks, which creates national security concerns.

Further, there are several concerns related to the environment and health that have been raised in relation to the deployment of 5G technology. It requires the installation of many more cell towers and antennae than previous generations of mobile networks. The environmental impact of this increased infrastructure, including the potential impact on wildlife and natural habitats, is a concern. The increased use of 5G networks is likely to lead to an increase in energy consumption, which could have an impact on greenhouse gas emissions and contribute to climate change. Additionally, there have been concerns about the potential health effects of 5G technology, particularly related to the use of millimetre waves for the transmission of data. Some studies have suggested that these waves may have an impact on human health, although the majority of scientific studies have found no evidence of such effects. 5G technology uses the same frequency bands as meteorological radars and could interfere with the accuracy of weather forecasts. Such networks will increase the exposure of people to electromagnetic fields, which could have negative impacts on health, particularly for people who are sensitive to electromagnetic fields.

However, it’s pertinent to note that these concerns are being studied and addressed by governments and regulatory bodies, and steps are being taken to mitigate them. However, it’s important to be aware of these issues and take appropriate action to address them as 5G networks are deployed to ensure that the benefits of 5G technology are realized while minimizing the security, privacy, environmental and health risks.

Conclusion:

Resolving these concerns will require a multi-faceted approach that involves cooperation between governments, industry, and other stakeholders. Governments and industry should work together to develop and implement security standards and best practices for 5G networks. This could include regular security audits and penetration testing, as well as measures to detect and respond to cyber-attacks. They should work together to develop and implement data protection and privacy policies for 5G networks. This could include measures to protect personal data, such as encryption and secure data storage, as well as clear guidelines on how data is collected, used, and shared. They should conduct further research on the potential health effects of 5G technology, and take steps to mitigate any negative impacts. This could include measures such as limiting exposure to electromagnetic fields and ensuring that cell towers are located in safe areas. They should take appropriate measures to minimize the environmental impact of 5G networks. This could include measures such as using renewable energy to power cell towers and antennae, and minimizing the impact of infrastructure on wildlife and natural habitats. They should secure the supply chain of 5G networks. This could include measures such as ensuring that vendors comply with security standards, and conducting regular security audits of suppliers.

Continue Reading

Science & Technology

The Indian Drone Industry is Growing Leaps & Bounds

Avatar photo

Published

on

Rustom-2 drone

Iranian drones have wreaked havoc in war-stricken Ukraine. When it comes to drones until a few years back it was the USA Vs China, but now all countries have realized the potential of these flying machines.

Bill Gates had predicted that drones, overall, will be more impactful than one can ever imagine or think to help society in a positive way, but sadly, today they are being used in warfare at a very large scale. Where does India stand in the Drone Making Spectre?

Today, India uses drones for a variety of causes. It has‍ BVLOS (Beyond-visual-line-of-sight) flights, mosquito eradication drones, drones used for agricultural needs – like spraying pesticides etc., then there are seed-copters used for aforestation (planting seedballs). During the pandemic Indian drones supplied vaccines to far out regions, as estimates suggest that more than 24 lakh Indians die of treatable conditions every year simply because medicines don’t reach them on time. Drones are bridging the gap when it comes to inaccessibility of roads and other means of transport.

In India, drones can be seen everywhere, in weddings events and agricultural fields. There is a huge demand for drones and the Government is encouraging the industry to grow further. How is this emergence happening? Smit Shah, President of the Drone Federation of India is filled with ideas of zestful entrepreneurship and innovation for the Indian drone industry. He shares his views about how things in India’s Drone industry are shaping up.

“Since 2018, we have had multiple regulations and lot of work is happening on that front. Finally, in August 2021 we had our regulations liberalised. So, after multiple policy attempts and iterations we were able to crack the right policy. This is the policy of liberalisation and incentive towards the industry. Since mid 2021, we have had a boost in the ecosystem. We have multiple start-ups now, over 200 working in the drone manufacturing and technology space in the country.” says Shah.

The idea to ease the regulations has worked wonders for the industry and start-ups getting involved means a lot of innovation and experimentation is ongoing in the Indian drone industry. So, how are drones being used in governance and management?  There is a lot of talk of drones being used for surveillance at borders. In what ways does the Indian Government use drones? Shah says that multiple State Governments, the Union Government, various departments and private sector corporations are now adapting to drone usage at a very large scale. The Government has launched the ‘Swamitwa Scheme’ where 6.5 lakh villages are being mapped across the entire country through drones. The National Highway Authority of India (NHAI) has mandated monthly monitoring of all highways via drones. The armed forces are looking for buying drones for security surveillance on all borders using drones. Also they are being used in tracking logistics.

India is using drones in almost all important departments, especially in defence the country is trying to procure and develop the best possible technology for which many private corporations like the Adani Group have forged Joint Ventures with major International drone component manufacturing companies.

For the purpose of warfare India is using drones on the borders to keep an eye on the enemy. It endeavours to make more advancement in the domain. How are things shaping up on that front?

“During warfare you need round the clock monitoring and intelligence and capacity building. So, surveillance capability on the borders and logistic capability on the border means transporting various kinds of resources to the border outposts, including the high altitude regions is what is being looked at now. In India, Unmanned Aircraft Vehicle (UAF) Unmanned Aerial Vehicle (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Aircraft System (RPAS) are technological terms but are interchangeably used. All these are being used in our border security,” informs Shah.

India is rapidly scaling up its drone industry and is investing a lot on research and development. Not just for domestic use, it plans to use drones intensively for border security by the armed forces. Does India manufacture raw materials and components used in drones? What plans does it have to reduce dependence on other countries and boost its own home-built production capability? What is the road ahead?   

“A majority of the components are imported from different countries.  Now we have Indian start-ups and corporations who are engaged in building local supply chains and local design on drone components. The PLI incentive is encouraging for manufacturing drones and their related components in India. If we see the overall drone ecosystem of drones in India, it envisioned success lies on 4 key pillars. First is ease of doing business, under which policy was liberalised and much of the licence fees was reduced.  Second  is the financial incentive, like the Production Linked Incentive(PLI) under which domestic manufacturing has a 20% incentive with almost zero upfront commitment. One is not needed to do any plant or machinery investment or any minimum employment. It is a straight investment based on one’s capacity, so if you produce goods worth INR 100, you get 20% of your value addition. This is a sunrise sector, so rather than complicating incentives by tying them up with employment or revenue or upfront capital investment – it’s all straight in the face. The third part is protectionism or favouring the local industry via an import ban. At present, import of drones as a whole are banned but the import of components is not. Fourth is enhancing our own skilling, R&D, trying to becoming Athmnirbhar (Self Dependant) in every possible way and benefit our own industries. Though, a lot of technology for the smaller drones comes from across the world including China, US and Europe, for the bigger drones, like the ones used to patrol the borders or for offensive ops, it is specialized so that is coming from our partners or the domestic manufacturers,” elaborates Shah.

Many reforms by the Government have been introduced to encourage domestic production. It is confident that its own ecosystem will battle all odds and will be able to emerge as a frontrunner in drone making. The Government and industry are working in tandem to achieve this goal. In January, 2022, the Indian Government  has offered a 100% subsidy or 10 lakhs, whichever is less, up to March 2023 to promote the use of drones for agricultural purposes and reduce the labour burden on the farmers. Also a contingency fund of INR 6000 per acre has been set up for hiring Drones from the Custom Hiring Centres (CHC). Together, the subsidy and contingency funds shall help farmers access latest drone technology at a very reasonable price.

Does India export drones to any other countries. If NO, by when does it intend to do so? What are its plans to become a recognized name in the drone export segment?

“Slowly and steadily India is looking at exporting. We are looking at certain initiatives to scale up our export segment and expect good results very soon. Our first goal has to be design independence. In terms of supply chains it is difficult to become 100% India made as many raw materials are imported. For that we need to have our own designs and supply chain reliability. In supply chain reliability there are 3 things, first we have domestic supply chains, second we have primary supply chains and third is we have secondary alternate supply chains. If we build good supply chains then we do not have be dependant by the traditional definition because then we have backup & balance of the supply chain. In today’s global civilization we can’t become completely independent.  The right approach is to be dependant but also balanced.  Some aspects of our drones may be better than others and vice versa. We are not yet ripened in this as our Information Technology (IT) sector is. India is trying to have its own electronic manufacturing fabs, so things are gaining momentum. In five years the game will totally change,” asserts Shah confidently.

The industry and Drone Federation of India is optimistic that in a few years to come India will be a champion drone manufacturer and may export to other countries as well. Be it the procurement of raw materials or other critical components it seems to be progressing fast for self-reliance in the drone industry.  

Continue Reading

Publications

Latest

Middle East37 mins ago

Israelis and Palestinians do what they do best, but for the wrong reasons

Prime Minister Binyamin Netanyahu has put Israel’s closest allies and some of his key partners on the spot. So has...

Health & Wellness3 hours ago

Mushrooms emerge from the shadows in pesticide-free production push

By Ali Jones Mention La Rioja in northern Spain and most people will picture majestic sun-drenched vineyards nestled in the...

Middle East5 hours ago

Sisi’s visit to Armenia and Azerbaijan to join the Eurasian Union and BRICS

President El-Sisi’s visit to India, followed by Armenia and Azerbaijan, came as an affirmation from the Egyptian side and its...

Middle East6 hours ago

West sees Iran in a new way

The Wall Street Journal reported from Tehran that “a lethal crackdown and an ailing economy have quieted anti-government street demonstrations...

World News8 hours ago

Sergey Lavrov: ‘If you want peace, always be ready to defend yourself’

Russian Foreign Minister Sergey Lavrov gave an exclusive interview to Sputnik on Thursday, February 2. The conversation took place at...

World News10 hours ago

More Americans believe US provides ‘too much support’ to Ukraine

A growing portion of Americans think that the U.S. is giving too much support to Ukraine, as the Biden administration...

International Law12 hours ago

Will COPUOS five-year mission produce a new “international governance instrument” for outer space resources?

Introduction During its 2022 session, the Legal Subcommittee (LSC) of the United Nation’s Committee on the Peaceful Uses of Outer...

Trending