Connect with us

Science & Technology

China’s conquest of space

CGTN Photo

Published

on

Manned cosmic flight is the most technologically complex and difficult aerospace project in the world. It represents a country’s strength in science, technology and economy.

Many countries have submitted plans for manned space flight, but for decades there have only been three States that could actually send men into space independently.

According to statistics, 80% of the over one thousand new materials in China in recent years have been developed thanks to space technology, and over two thousand have been shifted from space technology to various sectors of the national economy.

On May 5, 2020, the Changzheng 5B (Long March) space launcher developed for China’s manned space station project successfully lifted off from Wenchang (Hainan Island), officially kicking off the Third Step mission of China’s manned space project.

The selection of the third group of reserve astronauts for China’s manned space project was completed on October 1 last. Eighteen astronauts, i.e. seven pilots, seven flight engineers and four cargo experts, will participate in the third step of China’s manned space project.

With the intensive development of various tasks, Chinese manned space flight has entered the Chinese space station project.

In 1992, the Chinese manned space flight project was launched and a three-stage development strategy was established.

1) Launch a manned spacecraft; develop a preliminary design for a pilot manned spacecraft and carry out space application experiments.

2) Engage in new discoveries in the field of astronaut egress technology, spacecraft rendezvous and docking technology; establish a space laboratory and solve problems related to it with short-term assistance.

3) Build a space station to solve the problem of large-scale space applications with long-term assistance.

Since 1992, generations of astronauts have been self-sufficient and have continued to work: from unmanned flight to manned flight; from in-ship experiments to out-of-ship activities; from single-ship flight to the stable operation of combined bodies.

On October 15, 2003, China’s first manned spacecraft, Shenzhou V, carried astronaut Yang Liwei into space. After 21 hours and 23 minutes, as well as 14 orbits, the spacecraft landed safely. China became the third country in the world capable of sending humans into space independently.

In 1957, the USSR’s first artificial satellite ushered in the era of the human conquest of space. On April 12, 1961, Soviet astronaut Jurij Gagarin undertook the first human space flight in the Vostok 1 spacecraft. On May 5 of the same year, American astronaut Alan Shepard remained in space for 15 minutes in the Freedom 7 spacecraft, thus becoming the second astronaut in human history.

Faced with the successes of the two superpowers in the space field, President Mao was shocked and asked: ‘How can we be considered a powerful country? We cannot even put a potato into space!!!”

In the early 1970s, China began research into manned space flight. After the launch of China’s first artificial earth satellite, the Dongfanghong 1, Qian Xuesen, the then President of the Fifth Academy of the Ministry of National Defence, pledged that China should also undertake manned space flight.

Project 714 (i.e. 1971, April) was born and the probe was to be named Dawn One. However, due to various financial and technological problems, the project was eventually shelved.

Over the subsequent 20 years, Chinese space technology continued to develop. Most notably in 1975, China successfully launched and recovered its first satellite, thus making it the third country in the world to operate satellite recovery technology after the United States and the Soviet Union, as well as laying a solid foundation for China to carry out manned space flights.

But even so, it took years from the formal establishment of a manned space project to the regular launch of China’s first astronaut.  

Since the birth of manned space flight, some scholars have calculated that, as a percentage of GDP, manned space flight is the most expensive technological project in history.

A U.S. shuttle costs up to 500 million dollars per flight, and 300 to 400 million U.S. dollars are needed for maintenance.

China’s manned space project is known for its high efficiency and cost-effectiveness. According to the data released by the Beijing Engineering Bureau, from the start of the project to the completion of the launch of the Shenzhou VI spacecraft in 2005 (i.e. when the first phase of the manned space project was completed), the total cost of the project reached about 20 billion yuan.

Manned space flight incorporates many modern state-of-the-art technologies. The structure of carrier rockets, manned space vehicles and spacecraft is complex, with tens of thousands of parts and components. The failure or malfunction of just one part can cause an accident.

On February 1, 2003, the U.S. space shuttle Columbia disintegrated and exploded on re-entry, killing all seven astronauts, when a fragment of foam accidentally fell out of the fuel tank.

If a country is able to send its astronauts into space, it will not only reflect on its national strength, but will also greatly enhance national pride and improve the sense of State and internal cohesion.

Deng Xiaoping stated: ‘If China had not a nuclear bomb, a hydrogen bomb or launched satellites since the 1960s, it would not be an important country with a strong influence and would not have its current international status’. Hence, in the 21st century, manned space flight represents all of this.

Obviously Chinese astronauts have the right to be proud, because they have achieved all this little by little and with their own efforts.

Let us consider the case of the International Space Station (ISS), built jointly by nineteen countries and regional organisations. This long list includes developed and developing countries (Brazil, Kazakhstan, Malaysia, South Africa), but not China. Some States have deliberately imposed a strict embargo on China, in an attempt to exclude it from the ISS.

All this makes it clear to Chinese astronauts and scientists that key fundamental technologies cannot be traded or bought.

The Chinese are therefore firmly following the path of independent development and innovation to enhance manned spaceflight without the help of anyone else.

Around 2022, a Chinese self-built space station will be completed and deployed and, according to foreign sources, the ISS will be decommissioned in 2024.

Some countries have turned to China in search of opportunities and cooperation. This switching of sides explains once again that only by mastering key fundamental technologies does the People’s Republic of China have a say and visibility.

Facts have shown that, even under the long-term technical embargo of some countries, China’s manned space industry has taken off ‘against the wind’.

With the hard work of generations of astronauts, it has gradually grown and developed into a space power, with distinctly Chinese characteristics.

If manned space flight is a flagship endeavour, independent innovation is the scale that supports efforts.

In 2022, the Chinese Space Station will officially complete its in-orbit construction task. At that juncture, China will bring high-level experimental equipment to it in the fields of aerospace medicine, space life and biology, materials, microgravity and fluid combustion, physics, astronomy, etc.

At 23:11, on December 1 last, the Chang’e-5 probe successfully landed on Earth. The main mission of the exploration was to collect and “pack” about 2,000 grams of lunar soil and rock samples. In fact, China has taken another step towards a manned landing on our satellite.

Advisory Board Co-chair Honoris Causa Professor Giancarlo Elia Valori is an eminent Italian economist and businessman. He holds prestigious academic distinctions and national orders. Mr. Valori has lectured on international affairs and economics at the world’s leading universities such as Peking University, the Hebrew University of Jerusalem and the Yeshiva University in New York. He currently chairs “International World Group”, he is also the honorary president of Huawei Italy, economic adviser to the Chinese giant HNA Group. In 1992 he was appointed Officier de la Légion d’Honneur de la République Francaise, with this motivation: “A man who can see across borders to understand the world” and in 2002 he received the title “Honorable” of the Académie des Sciences de l’Institut de France. “

Continue Reading
Comments

Science & Technology

Iran among five pioneers of nanotechnology

Published

on

Prioritizing nanotechnology in Iran has led to this country’s steady placement among the five pioneers of the nanotechnology field in recent years, and approximately 20 percent of all articles provided by Iranian researchers in 2020 are relative to this area of technology.

Iran has been introduced as the 4th leading country in the world in the field of nanotechnology, publishing 11,546 scientific articles in 2020.

The country held a 6 percent share of the world’s total nanotechnology articles, according to StatNano’s monthly evaluation accomplished in WoS databases.

There are 227 companies in Iran registered in the WoS databases, manufacturing 419 products, mainly in the fields of construction, textile, medicine, home appliances, automotive, and food.

According to the data, 31 Iranian universities and research centers published more than 50 nano-articles in the last year. 

In line with China’s trend in the past few years, this country is placed in the first stage with 78,000 nano-articles (more than 40 percent of all nano-articles in 2020), and the U.S. is at the next stage with 24,425 papers. These countries have published nearly half of the whole world’s nano-articles.

In the following, India with 9 percent, Iran with 6 percent, and South Korea and Germany with 5 percent are the other head publishers, respectively.

Almost 9 percent of the whole scientific publications of 2020, indexed in the Web of Science database, have been relevant to nanotechnology.

There have been 191,304 nano-articles indexed in WoS that had to have a 9 percent growth compared to last year. The mentioned articles are 8.8 percent of the whole produced papers in 2020.

Iran ranked 43rd among the 100 most vibrant clusters of science and technology (S&T) worldwide for the third consecutive year, according to the Global Innovation Index (GII) 2020 report.

The country experienced a three-level improvement compared to 2019.

Iran’s share of the world’s top scientific articles is 3 percent, Gholam Hossein Rahimi She’erbaf, the deputy science minister, has announced.

The country’s share in the whole publications worldwide is 2 percent, he noted, highlighting, for the first three consecutive years, Iran has been ranked first in terms of quantity and quality of articles among Islamic countries.

Sourena Sattari, vice president for science and technology has said that Iran is playing the leading role in the region in the fields of fintech, ICT, stem cell, aerospace, and is unrivaled in artificial intelligence.

From our partner Tehran Times

Continue Reading

Science & Technology

Free And Equal Internet Access As A Human Right

Published

on

Having internet access in a free and equal way is very important in contemporary world. Today, there are more than 4 billion people who are using internet all around the world. Internet has become a very important medium by which the right to freedom of speech and the right to reach information can be exercised. Internet has a central tool in commerce, education and culture.

Providing solutions to develop effective policies for both internet safety and equal Internet access must be the first priority of governments. The Internet offers individuals power to seek and impart information thus states and organizations like UN have important roles in promoting and protecting Internet safety. States and international organizations play a key role to ensure free and equal Internet access.

The concept of “network neutrality is significant while analyzing equal access to Internet and state policies regulating it. Network Neutrality (NN) can be defined as the rule meaning all electronic communications and platforms should be exercised in a non-discriminatory way regardless of their type, content or origin. The importance of NN has been evident in COVID-19 pandemic when millions of students in underdeveloped regions got victimized due to the lack of access to online education.

 Article 19/2 of the International Covenant on Civil and Political Rights notes the following:

“Everyone shall have the right to freedom of expression; this right shall include freedom to seek, receive and impart information and ideas of all kinds, regardless of frontiers either orally, in writing or in print, in the form of art, or through any other media of his choice.”

Internet access and network neutrality directly affect human rights. The lack of NN undermines human rights and causes basic human right violations like violating freedom of speech and freedom to reach information. There must be effective policies to pursue NN. Both nation-states and international organizations have important roles in making Internet free, safe and equally reachable for the people worldwide. States should take steps for promoting equal opportunities, including gender equality, in the design and implementation of information and technology. The governments should create and maintain, in law and in practice, a safe and enabling online environment in accordance with human rights.

It is known that, the whole world has a reliance on internet that makes it easy to fullfill basic civil tasks but this is also threatened by increasing personal and societal cyber security threats. In this regard, states must fulfill their commitment to develop effective policies to attain universal access to the Internet in a safe way.

 As final remarks, it can be said that, Internet access should be free and equal for everyone. Creating effective tools to attain universal access to the Internet cannot be done only by states themselves. Actors like UN and EU have a major role in this process as well.

Continue Reading

Science & Technology

Future Energy Systems Need Clear AI Boundaries

Published

on

Today, almost 60% of people worldwide have access to the Internet via an ever-increasing number of electronic devices. And as Internet usage grows, so does data generation.

Data keeps growing at unprecedented rates, increasingly exceeding the abilities of any human being to analyse it and discover its underlying structures.

Yet data is knowledge. This is where artificial intelligence (AI) comes in. Today’s high-speed computing systems can “learn” from experience and, thus, effectively replicate human decision-making.

Besides holding its own among global chess champions, AI aids in converting unstructured data into actionable knowledge. At the same time, it enables the creation of even more insightful AI – a win-win for all. However, this doesn’t happen without challenges along the way.

Commercial uses of AI have expanded steadily in recent years across finance, healthcare, education and other sectors. Now, with COVID-19 lockdowns and travel restrictions, many countries have turned to innovative technologies to halt the spread of the virus.

The pandemic, therefore, has further accelerated the global AI expansion trend.

Energy systems need AI, too.

Rapidly evolving smart technology is helping to make power generation and distribution more efficient and sustainable. AI and the Big Data that drives it have become an absolute necessity.  Beyond just facilitating and optimising, these are now the basic tools for fast, smart decision making.

With the accelerating shift to renewable power sources, AI can help to reduce operating costs and boost efficiency. Crucially, AI-driven “smart grids” can manage variable supply, helping to maximise the use of solar and wind power.

Read more in IRENA’s Innovation Toolbox.

Risks must be managed to maximise the benefits.

AI usage in the energy sector faces expertise-related and financial constraints.

Decision makers, lacking specialised knowledge, struggle to appreciate the wide-ranging benefits of smart system management. In this respect, energy leaders have proven more conservative than those in other sectors, such as healthcare.

Meanwhile, installing powerful AI tools without prior experience brings considerable risks. Data loss, poor customisation, system failures, unauthorised access – all these errors can bring enormous costs.

Yet like it or not, interconnected devices are on the rise.

What does this all mean for the average consumer?

Smart phones, smart meters and smart plugs, connected thermostats, boilers and smart charging stations have become familiar, everyday items. Together, such devices can form the modern “smart home”, ideally powered by rooftop solar panels.

AI can help all of us, the world’s energy consumers, become prosumers, producing and storing our own energy and interacting actively with the wider market. Our data-driven devices, in turn, will spawn more data, which helps to scale up renewables and maximise system efficiency.

But home data collection raises privacy concerns. Consumers must be clearly informed about how their data is used, and by whom. Data security must be guaranteed. Consumer privacy regulations must be defined and followed, with cybersecurity protocols in place to prevent data theft.

Is the future of AI applications in energy bright?

Indeed, the outlook is glowing, but only if policy makers and societies strike the right balance between innovation and risk to ensure a healthy, smart and sustainable future.

Much about AI remains to be learned. As its use inevitably expands in the energy sector, it cannot be allowed to work for the benefit of only a few. Clear strategies need to be put in place to manage the AI use for the good of all.

IRENA

Continue Reading

Publications

Latest

Trending