Connect with us

Environment

The race to zero emissions, and why the world depends on it

Avatar photo

Published

on

A host of countries have recently announced major commitments to significantly cut their carbon emissions, promising to reach “net zero” in the coming years. The term is becoming a global rallying cry, frequently cited as a necessary step to successfully beat back climate change, and the devastation it is causing.

What is net zero and why is it important?

Put simply, net zero means we are not adding new emissions to the atmosphere. Emissions will continue, but will be balanced by absorbing an equivalent amount from the atmosphere.

Practically every country has joined the Paris Agreement on climate change, which calls for keeping the global temperature to 1.5°C above pre-industrial era levels. If we continue to pump out the emissions that cause climate change, however, temperatures will continue to rise well beyond 1.5, to levels that threaten the lives and livelihoods of people everywhere.

This is why a growing number of countries are making commitments to achieve carbon neutrality, or “net zero” emissions within the next few decades. It’s a big task, requiring ambitious actions starting right now.

Net zero by 2050 is the goal. But countries also need to demonstrate how they will get there. Efforts to reach net-zero must be complemented with adaptation and resilience measures, and the mobilization of climate financing for developing countries.

So how can the world move toward net zero?

The good news is that the technology exists to reach net zero – and it is affordable.

A key element is powering economies with clean energy, replacing polluting coal – and gas and oil-fired power stations – with renewable energy sources, such as wind or solar farms. This would dramatically reduce carbon emissions. Plus, renewable energy is now not only cleaner, but often cheaper than fossil fuels.

A wholesale switch to electric transport, powered by renewable energy, would also play a huge role in lowering emissions, with the added bonus of slashing air pollution in the world’s major cities. Electric vehicles are rapidly becoming cheaper and more efficient, and many countries, including those committed to net zero, have proposed plans to phase out the sale of fossil-fuel powered cars.

Other harmful emissions come from agriculture (livestock produce significant levels of methane, a greenhouse gas). These could be reduced drastically if we eat less meat and more plant-based foods. Here again, the signs are promising, such as the rising popularity of “plant-based meats” now being sold in major international fast-food chains.

What will happen to remaining emissions?

Reducing emissions is extremely important. To get to net zero, we also need to find ways to remove carbon from the atmosphere. Here again, solutions are at hand. The most important have existed in nature for thousands of years.

 These “nature-based solutions” include forests, peatbogs, mangroves, soil and even underground seaweed forests, which are all highly efficient at absorbing carbon. This is why huge efforts are being made around the world to save forests, plant trees, and rehabilitate peat and mangrove areas, as well as to improve farming techniques.

Who is responsible for getting to net zero?

We are all responsible as individuals, in terms of changing our habits and living in a way which is more sustainable, and which does less harm to the planet, making the kind of lifestyle changes which are highlighted in the UN’s Act Now campaign.

The private sector also needs to get in on the act and it is doing so through the UN Global Compact, which helps businesses to align with the UN’s environmental and societal goals.

It’s clear, however, that the main driving force for change will be made at a national government level, such as through legislation and regulations to reduce emissions.

Many governments are now moving in the right direction. By early 2021, countries representing more than 65 per cent of global carbon dioxide emissions and more than 70 per cent of the world economy, will have made ambitious commitments to carbon neutrality. 

The European Union, Japan and the Republic of Korea, together with more than 110 other countries, have pledged carbon neutrality by 2050; China says it will do so before 2060.

Are these commitments any more than just political statements?

These commitments are important signals of good intentions to reach the goal, but must be backed by rapid and ambitious action. One important step is to provide detailed plans for action in nationally determined contributions or NDCs. These define targets and actions to reduce emissions within the next 5 to 10 years. They are critical to guide the right investments and attract enough finance.

So far, 186 parties to the Paris Agreement have developed NDCs. This year, they are expected to submit new or updated plans demonstrating higher ambition and action. Click here to see the NDC registry.

Is net zero realistic?

Yes! Especially if every country, city, financial institution and company adopts realistic plans for transitioning to net zero emissions by 2050.

The COVID-19 pandemic recovery could be an important and positive turning point. When economic stimulus packages kick in, there will be a genuine opportunity to promote renewable energy investments, smart buildings, green and public transport, and a whole range of other interventions that will help to slow climate change.

But not all countries are in the same position to affect change, are they?

That’s absolutely true. Major emitters, such as the G20 countries, which generate 80 per cent of carbon emissions, in particular, need to significantly increase their present levels of ambition and action.

Also, keep in mind that far greater efforts are needed to build resilience in vulnerable countries and for the most vulnerable people; they do the least to cause

climate change but bear the worst impacts. Resilience and adaptation action do not get the funding they need, however.

Even as they pursue net zero, developed countries must deliver on their commitment to provide $100 billion dollars a year for mitigation, adaptation and resilience in developing countries.

Continue Reading
Comments

Environment

Mighty oceans and humble ponds play key roles in biodiversity

Avatar photo

Published

on

By monitoring oceans and peering into ponds, European projects seek to protect an array of animal and plant life.

By SOFIA STRODT

In January, word emerged that scientists had discovered a new colony of penguins in Antarctica using images from Europe’s flagship Copernicus satellite network. By coincidence, the same month marked the start of an initiative that will rely on the same Earth-observation system for different purposes.

The EU-funded NECCTON project is gearing up to help Europe protect endangered fish and whales. It will harness the European Copernicus Marine Service – or CMEMS – to collect more detailed data on species threatened by habitat loss, unsustainable fishing and industrial pollution.

From satellites to seabeds

‘This is going to be particularly helpful for policymakers, marine managers and fisheries,’ said Stefano Ciavatta, coordinator of the project running through 2026. ‘We want to provide better simulations and projections of the state of marine ecosystems and of their ability to support diverse fish communities.’

While earth-observation satellites including Europe’s flagship Copernicus number in the many hundreds, it’s often claimed that we know less about the ocean floor than we do about the surface of the moon.

Biodiversity protection has received fresh impetus as a result of a United Nations summit in Canada in December 2022 and a landmark UN agreement in March this year on a High Seas Treaty to protect oceans. And with 68 000 kilometres of coastline – more than the US and Russia combined –the EU is stepping up efforts to improve marine health.

CMEMS, one of six Copernicus services, provides analyses and forecasts of marine environments for all kinds of users ranging from fishing hobbyists to the navies of EU Member States. It is run by France-based Mercator Ocean International, a non-profit entity in the process of becoming an intergovernmental organisation.

The Copernicus marine service monitors all the European regional seas and the world’s oceans. Its models forecast things like sea temperatures, tides and currents, making it easier to anticipate developments such as fish migration patterns. 

NECCTON plans to provide a more complete picture of the environmental state of these waters by gathering data on fish, pollution and the seabed conditions for marine life.

‘We will develop new tools to share the modelling capabilities of the Copernicus Marine Service across the different centres in Europe, optimise scientific efforts and boost collaboration,’ said Ciavatta, an oceanographer at Mercator Ocean International. 

Clearer views

The ultimate aim is to help users of the service make better-informed decisions about the sustainable use of marine resources.

The Copernicus marine service could, for instance, deliver information on where tuna populations are located or whether marine habitats have the right conditions for dolphins.

To make sound policy decisions, scientists and authorities need projections on how changes that result from global warming, pollution and overfishing could affect the marine system as a whole. 

NECCTON plans to simulate changes in organisms within the food web using climate scenarios. This activity could, for example, enable researchers to get a clearer picture of the impact of declining fish stocks on the marine system over the coming decades. 

Pond treasures

When it comes to protecting biodiversity, it’s not just the mighty oceans that have researchers’ attention. So do humble duck ponds.

The EU-funded PONDERFUL project is examining the relationship between ponds and their surrounding environment. The initiative is focusing on the wide range of living organisms to which ponds are home.

Fish, toads, snails, dragonflies and leeches are just some of the creatures making up a vast, balanced web that, if disrupted, could result in the ecosystem’s collapse. 

‘Collectively, ponds are the richest freshwater habitats,’ said project coordinator Sandra Brucet, a biologist and researcher on aquatic ecology at the University of Vic in Spain. ‘They are more abundant than lakes, rivers and wetlands.’

Research suggests that ponds make a greater contribution to biodiversity than many larger bodies of water by supporting more plants and animals, many of which are endangered.

Nonetheless, ponds so far have been largely neglected by policymakers. For example, a major piece of EU legislation in 2000 on cleaning up water bodies excludes for the most part those smaller than 50 hectares. Also, research on ponds has long been overlooked.

‘Two decades ago, researchers mainly focused on lakes and rivers,’ said Brucet, who came up with the idea of PONDERFUL. 

Home stretch

Now things are changing as the project, which began in late 2020, enters its final two years.

With more than 80 researchers from 11 countries – Belgium, Denmark, France, Germany, Portugal, Spain, Sweden, Switzerland, Turkey, the UK and Uruguay – the initiative is deepening knowledge about how best to manage and restore ponds in a changing climate. 

PONDERFUL is evaluating future “pondscapes” at eight demonstration sites that include a total of more than 500 ponds. Testing will help develop a guide for reducing pollution in ponds, creating new ones and helping them serve broader environmental goals such as the preservation of biodiversity. 

Runoff from agricultural fields is one of the main threats to the health of ponds. Nutrients in such runoff can cause harmful algal blooms, a lack of oxygen and dead zones as fish die off.

Key lessons

Brucet and her team have already drawn some important lessons. 

An accumulation of debris and an increase in sediment loads, which result mainly from agricultural-field erosion and are usually rich in nutrients from fertiliser runoff, can have a harmful effect on the overall state of ponds.

Sediment increases are accelerated by erosion of ponds’ edges and seasonal buildup of organic material such as dead plants and tree leaves, for instance. The nutrients in this material in turn often feed algal blooms that can produce toxins and kill fish, mammals and birds.

Dredging and removing sediments help prevent such buildup.

Separately, reshaping the edges of ponds that are artificially drained for agriculture can prevent too much water from escaping.

When efforts are made to enhance pond wildlife as a whole, the researchers found that not only do populations of endangered frogs, toads and newts increase but also flora benefits. 

‘Biodiversity of aquatic plants increases significantly after cleaning up ponds,’ Brucet said.

Healthy ponds even play a role on another important environmental front: fighting climate change. That’s because they act as “carbon sinks” that store greenhouse gases including carbon dioxide.

Brucet’s project runs through November 2024 and signals that ponds, after long being disregarded by researchers and policymakers, are finally joining oceans and seas as a focus of Europe’s green ambitions.

Research in this article was funded via the EU. The article was originally published in Horizon, the EU Research and Innovation Magazine. 

Continue Reading

Environment

Largest river and wetland restoration initiative in history launched at UN Water Conference

Avatar photo

Published

on

A coalition of governments today launched the Freshwater Challenge – the largest ever initiative to restore degraded rivers, lakes and wetlands, which are central to tackling the world’s worsening water, climate and nature crises.

Announced at the UN Water Conference in New York, the Freshwater Challenge aims to restore 300,000km of rivers  – equivalent to more than 7 times around the Earth – and 350 million hectares of wetlands – an area larger than India – by 2030.

Along with water supplies, healthy freshwater ecosystems provide a wealth of benefits to people and nature, and are critical to mitigating and adapting to climate change, and achieving the Sustainable Development Goals (SDGs). Yet one-third of the world’s wetlands have been lost over the past 50 years, and we are still losing them faster than forests. Rivers and lakes are the most degraded ecosystems in the world, with fish populations, many of which are vital for community food security, pushed to the brink.

Released this week, the IPCC’s sixth assessment report outlines the serious impacts of climate change on freshwater ecosystems, highlighting the need to protect and restore them to enhance adaptation and build resilient societies, economies and ecosystems.

Championed by the governments of Colombia, the Democratic Republic of Congo, Ecuador, Gabon, Mexico and Zambia, the Freshwater Challenge calls on all governments to commit to clear targets in their updated National Biodiversity Strategies and Action Plans, National Determined Contributions and National Implementation Plan for the SDGs to urgently restore healthy freshwater ecosystems.

Susana Muhamad, Minister of Environment and Sustainable Development,  Colombia: said”This initiative is in line with the priorities of the National Development Plan 2022-2026, which will allow the country to strengthen Territorial Planning around Water by protecting all water systems from a perspective of water as a common resource and fundamental right. This implies the participation of communities to resolve socio-environmental conflicts, respecting cultural diversity and guaranteeing the conservation of biodiversity”.

The Freshwater Challenge is a country-driven initiative with an inclusive, collaborative approach to implementation, where governments and their partners will co-create freshwater solutions with indigenous people, local communities, and other stakeholders.

Building on the Global Biodiversity Framework agreed in Montreal in December 2022, which included the restoration of 30% of the world’s degraded ‘inland waters’, the Challenge will contribute to the UN Decade on Ecosystem Restoration. The UN Decade is a drive to revive our planet, co-led by the United Nations Environment Programme (UNEP) and the UN Food and Agriculture Organization (FAO).

Inger Andersen, UNEP Executive Director said, “Healthy rivers, lakes and wetlands underpin our societies and economies, yet they are routinely undervalued and overlooked. That is what makes the commitment by the governments of Colombia, DR Congo, Ecuador, Gabon, Mexico and Zambia so commendable. While countries have pledged to restore one billion hectares of land, the Freshwater Challenge is a critical first step in bringing a much-needed focus on freshwater ecosystems.”

Stuart Orr, Freshwater Lead at WWF International said, “The clearest sign of the damage we have done – and are still doing – to our rivers, lakes and wetlands is the staggering 83% collapse in freshwater species populations since 1970. The Freshwater Challenge puts the right goals and frameworks in place to turn this around – benefiting not only nature but also people across the world. We need governments and partners to commit to this urgently as part of the Water Action Agenda coming out of this UN conference.”

The Freshwater Challenge will focus on providing the evidence needed at country level to effectively design and implement restoration measures, identify priority areas for restoration, update relevant national strategies and plans, and mobilise resources and set up financial mechanisms to implement the targets.

Championed by the coalition of countries, the Freshwater Challenge is supported by the UN Decade on Ecosystem Restoration, the Secretariat of the Convention on Wetlands, WWF, IUCN, The Nature Conservancy, Wetlands International and ABinBev.

Continue Reading

Environment

Clouds in the sky provide new clues to predicting climate change

Avatar photo

Published

on

While barely being given a second thought by most people, the masses of condensed water vapour floating in the atmosphere play a big role in global warming.

By MICHAEL ALLEN

Predicting how much Earth’s climate will warm is vital to helping humankind prepare for the future. That in turn requires tackling a prime source of uncertainty in forecasting global warming: clouds.

Some clouds contribute to cooling by reflecting part of the Sun’s energy back into space. Others contribute to warming by acting like a blanket and trapping some of the energy of Earth’s surface, amplifying the greenhouse effect.

Puzzle pieces

‘Clouds interact very strongly with climate,’ said Dr Sandrine Bony, a climatologist and director of research at the French National Centre for Scientific Research (CNRS) in Paris.

They influence the structure of the atmosphere, impacting everything from temperature and humidity to atmospheric circulations.

And in turn the climate influences where and what types of clouds form, according to Bony, a lead author of the Nobel Peace Prize-winning assessment report in 2007 by the United Nations Intergovernmental Panel on Climate Change.

So many processes and feedback loops can affect climate change that it’s helpful to break down the issue into smaller parts.

‘Every time we manage to better understand one of the pieces, we decrease the uncertainty of the whole problem,’ said Bony, who coordinated the EU-funded EUREC4A project that ended last year. 

A number of years ago, Bony and her colleagues discovered that small, fluffy clouds common in trade wind regions cause some of the largest levels of uncertainty in climate models. These clouds are known as trade cumulus.

While trade cumulus clouds are small and relatively unspectacular, they are numerous and very widely found in the tropics, according to Bony. Because there are so many of these clouds, what happens to them potentially has a huge impact on climate.

EUREC4A used drones, aircraft and satellites to observe trade cumulus clouds and their interactions with the atmosphere over the western Atlantic Ocean, near Barbados.

Many models assume that the structure and number of these clouds will change significantly as the global temperature warms, leading to possible feedback loops that amplify or dampen climate change. The models that project a strong reduction in such clouds as temperatures rise tend to predict a higher degree of global warming.

Good news

But Bony and her colleagues discovered that trade cumulus clouds change much less than expected as the atmosphere warms.

‘In a way, it is good news because a process that we thought could be responsible for a large amplification of global warming does not seem to exist,’ she said. More importantly, it means that climatologists can now use models that more accurately represent the behaviour of these clouds when predicting the effect of climate change.

Reducing this element of uncertainty in forecasts of the global extent of warming will make predictions of local impacts such as heatwaves in Europe more precise, according to Bony.

‘The increase in the frequency of heatwaves very much depends on the magnitude of global warming,’ she said. ‘And the magnitude of global warming depends very much on the response of clouds.’

Water and ice

Meanwhile, Professor Trude Storelvmo, an atmospheric scientist at the University of Oslo in Norway, has been exploring the processes inside a different type of cloud – mixed-phased clouds – to help improve climate models.

She is fascinated by how processes in clouds that occur on a tiny, micrometre scale can have such a big influence on global-scale atmospheric and climate processes.

Mixed-phase clouds contain both liquid water and ice and are responsible for the majority of rainfall across the globe. In recent years, it has become clear that they also play an important role in climate change.

Storelvmo coordinated the EU-funded MC2 project, which ran for five years until last month and unearthed new details about how mixed-phase clouds react to higher temperatures. The results highlight the urgency of transitioning to a low-carbon society.

The more liquid water that mixed-phased clouds contain, the more reflective they are. And by reflecting more radiation from the sun away from the Earth, they cool the atmosphere.

‘As the atmosphere warms, these clouds tend to shift away from ice and towards liquid,’ said Storelvmo. ‘What happens then is the clouds also become more reflective and they have a stronger cooling effect.’

Rude awakening

But some years ago, Storelvmo and colleagues discovered that most global climate models overestimate this effect. MC2 flew balloons into mixed-phase clouds and used remote sensing data from satellites to probe their structure and composition.

The researchers discovered that current climate models tend to make the mix of water and ice in mixed-phase clouds more uniform and less complex than in real clouds, leading to overestimations of the amount of ice in the clouds.

Because these model clouds have more ice to lose, when simulations warm them the shift in reflectiveness is greater than in real clouds, according to Storelvmo. This means the models overestimate the dampening effect that mixed-phase clouds have on climate change.

When the team plugged the more realistic cloud data into climate models and subjected it to simulated warming, they made another important finding: the increase in the reflectiveness of mixed-phased clouds weakens with warming.

While with moderate warming the dampening effect on higher temperatures is quite strong, this is no longer the case as warming intensifies.

There comes a point when the ice in the cloud has all melted and the cooling effect weakens – and then completely vanishes. Exactly when this starts to happen is a question for future research.

But, according to Storelvmo, this reinforces the need for urgent reductions in greenhouse-gas emissions.

‘Our findings suggest that if we just let greenhouse-gas emissions continue, it won’t just be a linear and gradual warming – there could be a rapidly accelerating warming when you get to a certain point,’ she said. ‘We really need to avoid reaching that point at all costs.’

As new findings on clouds such as these are integrated into models, climate predictions used by policymakers will become more refined.



Research in this article was funded via the EU’s European Research Council (ERC). The article was originally published in Horizon, the EU Research and Innovation Magazine. 

Continue Reading

Publications

Latest

New Social Compact41 mins ago

George Orwell, The Animal Farm – Book Review

Eric Arthur Blair (George Orwell) wrote one of the finest classic political satires, “The Animal Farm”. It was published in...

International Law2 hours ago

The ICC acts naively in foreign affairs

On March 17, 2023, Pre-Trial Chamber II of the International Criminal Court (ICC) issued warrants of arrest for two individuals...

East Asia7 hours ago

Chinese State Council report on human rights violations in the U.S. and around the world 2023

On Tuesday, March 28, 2023, the Chinese State Council Information Office issued a report on human rights violations in the...

World News12 hours ago

Shedding light on the Sun

As questions abound about the Earth’s closest star, scientists are seeking answers critical to forecasting solar flares that threaten satellites...

World News14 hours ago

Biden is preparing Americans to lose the Second Cold War?

Vladimir Putin’s approval  rating is 82%. Joe Biden’s  is 42%. Xi Jinping’s is anyone’s guess, but the Chinese near-unanimously trust...

World News16 hours ago

Riyadh joins Shanghai Cooperation Organization

Saudi Arabia’s cabinet approved on Wednesday a decision to join the Shanghai Cooperation Organization (SCO), as Riyadh builds a long-term...

arctic silk road arctic silk road
International Law18 hours ago

What does the Arctic Ocean hold for the world in changing global politics?

“The Revenge of Geography: What the Map Tells Us About Coming Conflicts and the Battle Against Fate”, a book by...

Trending