Connect with us

Energy News

Reaching energy and climate goals demands a dramatic scaling up of clean energy technologies

Published

on

A major effort to develop and deploy clean energy technologies worldwide is urgently needed to meet international energy and climate goals, particularly in order to reduce carbon emissions from areas beyond the power sector such as transport, buildings and industry, according to a new IEA report released today.

With global carbon emissions at unacceptably high levels, structural changes to the energy system are required to achieve the rapid and lasting decline in emissions called for by the world’s shared climate targets. The IEA’s Energy Technology Perspectives 2020 – the first core ETP report for three years following a revamp of the series – analyses more than 800 different technology options to assess what would need to happen to reach net-zero emissions by 2070 while ensuring a resilient and secure energy system.

It finds that transitioning just the power sector to clean energy would get the world only one-third of the way to net-zero emissions. Completing the journey will require devoting far more attention to the transport, industry and buildings sectors, which today account for about 55% of CO2 emissions from the energy system. Much greater use of electricity in these sectors – for powering electric vehicles, recycling metals, heating buildings and many other tasks – can make the single largest contribution to reaching net-zero emissions, according to the report, although many more technologies will be needed.

“Despite the difficulties caused by the Covid-19 crisis, several recent developments give us grounds for increasing optimism about the world’s ability to accelerate clean energy transitions and reach its energy and climate goals. Still, major issues remain. This new IEA report not only shows the scale of the challenge but also offers vital guidance for overcoming it,” said Dr Fatih Birol, the IEA’s Executive Director.

“Solar is leading renewables to new heights in markets across the globe, ultralow interest rates can help finance a growing number of clean energy projects, more governments and companies are throwing their weight behind these critical technologies, and all-important energy innovation may be about to take off,” Dr Birol said. “However, we need even more countries and businesses to get on board, we need to redouble efforts to bring energy access to all those who currently lack it, and we need to tackle emissions from the vast amounts of existing energy infrastructure in use worldwide that threaten to put our shared goals out of reach.”

Energy Technology Perspectives 2020 (ETP 2020) examines how to address the challenge of long-lasting energy assets already operating around the world – including inefficient coal power plants, steel mills and cement kilns, most of which were recently built in emerging Asian economies and could operate for decades to come. It finds that the power sector and heavy industry sectors together account for about 60% of emissions today from existing energy infrastructure. That share climbs to nearly 100% in 2050 if no action is taken to manage the existing assets’ emissions, underscoring the need for the rapid development of technologies such as hydrogen and carbon capture.

Ensuring that new clean energy technologies are available in time for key investment decisions will be critical. In heavy industries, for example, strategically timed investments could help avoid around 40% of cumulative emissions from existing infrastructure in these sectors. Accelerated innovation is crucial for this – and for scaling up the clean energy technologies needed across the energy system.

Hydrogen is expected to play a large and varied role in helping the world reach net-zero emissions by forming a bridge between the power sector and industries where the direct use of electricity would be challenging, such as steel and shipping. In the IEA’s Sustainable Development Scenario – a pathway for reaching international energy and climate goals – the global capacity of electrolysers, which produce hydrogen from water and electricity, expands to 3 300 gigawatts in 2070, from 0.2 gigawatts today. In 2070, these electrolysers consume twice the amount of electricity that China generates today. Carbon capture is also employed across a range of sectors in the Sustainable Development Scenario, including the production of synthetic fuels and some low-carbon hydrogen. And modern bioenergy directly replaces fossil fuels in areas like transport and offsets emissions indirectly through its combined use with carbon capture.

The blistering pace of technological transformation that would be necessary for the world to reach net-zero emissions by 2050 is explored in the report’s Faster Innovation Case. It finds that to meet the huge increase in demand for electricity, additions of renewable power capacity would need to average around four times the current annual record, which was reached in 2019.

Governments need to play an outsized role in accelerating clean energy transitions towards meeting international goals, according to ETP 2020. The report highlights core areas that policy makers need to make sure they address. And it notes that economic stimulus measures in response to the Covid-19 crisis offer a key opportunity to take urgent action that could boost the economy while supporting clean energy and climate goals.

Continue Reading
Comments

Energy News

Sustainable transport key to green energy shift

Published

on

With global transport at a crossroads, government leaders, industry experts, and civil society groups are meeting in Beijing, China, for a UN conference to chart the way forward to a more sustainable future for the sector, and greater climate action overall. 

The three-day UN Sustainable Transport Conference, which opened on Thursday, will examine how transportation can contribute to climate response, economic growth and sustainable development. 

It is taking place just weeks before the COP26 UN climate change conference in Glasgow, Scotland. 

In remarks to the opening, UN Secretary-General António Guterres underlined what is at stake. 

“The next nine years must see a global shift towards renewable energy. Sustainable transport is central to that transformation,” he said.  

The move to sustainable transport could deliver savings of $70 trillion by 2050, according to the World Bank.   

Better access to roads could help Africa to become self-sufficient in food, and create a regional food market worth $1 trillion by the end of the decade. 

Net-zero goal 

The COVID-19 pandemic has revealed how transport is “far more than a means of getting people and goods from A to B”, the UN chief said.

Rather, transport is fundamental to implementing the 2030 Agenda for Sustainable Development and the Paris Agreement on climate change, both of which were “badly off-track” even before the crisis. 

The Paris Agreement aims to limit global temperature rise to 1.5 degrees Celsius, but the door for action is closing, he warned. 

“Transport, which accounts for more than one quarter of global greenhouse gases, is key to getting on track. We must decarbonize all means of transport, in order to get to net-zero emissions by 2050 globally.” 

A role for everyone 

Decarbonizing transportation requires countries to address emissions from shipping and aviation because current commitments are not aligned with the Paris Agreement. 

Priorities here include phasing out the production of internal combustion engine vehicles by 2040, while zero emission vessels “must be the default choice” for the shipping sector. 

“All stakeholders have a role to play, from individuals changing their travel habits, to businesses transforming their carbon footprint,” the Secretary-General said. 

He urged governments to incentivize clean transport, for example through regulatory standards and taxation, and to impose stricter regulation of infrastructure and procurement. 

Safer transport for all 

The issues of safety and access must also be addressed, the Secretary-General continued. 

“This means helping more than one billion people to access paved roads, with designated space for pedestrians and bicycles, and providing convenient public transit options,” he said. 

“It means providing safe conditions for all on public transport by ending harassment and violence against women and girls, and reducing deaths and injuries from road traffic accidents.” 

Making transport resilient 

Post-pandemic recovery must also lead to resilient transport systems, with investments going towards sustainable transport, and generating decent jobs and opportunities for isolated communities. 

“Public transport should be the foundation for urban mobility,” he said. “Per dollar invested, it creates three times more jobs than building new highways.” 

With much existing transport infrastructure, such as ports, vulnerable to extreme climate events, better risk analysis and planning are needed, along with increased financing for climate adaptation, particularly in developing countries. 

Mr. Guterres stressed the need for effective partnerships, including with the private sector, so that countries can work together more coherently. 

“The transformative potential of sustainable transport can only be unleashed if improvements translate into poverty eradication, decent jobs better health and education, and increased opportunities for women and girls. Countries have much to learn from each other,” he said. 

Continue Reading

Energy News

Decisive action by governments is critical to unlock growth for low-carbon hydrogen

Published

on

Governments need to move faster and more decisively on a wide range of policy measures to enable low-carbon hydrogen to fulfil its potential to help the world reach net zero emissions while supporting energy security, the International Energy Agency says in a new report released today.

Currently, global production of low-carbon hydrogen is minimal, its cost is not yet competitive, and its use in promising sectors such as industry and transport remains limited – but there are encouraging signs that it is on the cusp of significant cost declines and widespread global growth, according the IEA’s Global Hydrogen Review 2021.

When the IEA released its special report on The Future of Hydrogen for the G20 in 2019, only France, Japan and Korea had strategies for the use of hydrogen. Today, 17 governments have released hydrogen strategies, more than 20 others have publicly announced they are working to develop strategies, and numerous companies are seeking to tap into hydrogen business opportunities. Pilot projects are underway to produce steel and chemicals with low-carbon hydrogen, with other industrial uses under development. The cost of fuel cells that run on hydrogen continue to fall, and sales of fuel-cell vehicles are growing.

“It is important to support the development of low-carbon hydrogen if governments are going to meet their climate and energy ambitions,” said Fatih Birol, the IEA Executive Director, who is launching the report today at the Hydrogen Energy Ministerial Meeting hosted by Japan. “We have experienced false starts before with hydrogen, so we can’t take success for granted. But this time, we are seeing exciting progress in making hydrogen cleaner, more affordable and more available for use across different sectors of the economy. Governments need to take rapid actions to lower the barriers that are holding low-carbon hydrogen back from faster growth, which will be important if the world is to have a chance of reaching net zero emissions by 2050.”

Hydrogen is light, storable and energy-dense, and its use as a fuel produces no direct emissions of pollutants or greenhouse gases. The main obstacle to the extensive use of low-carbon hydrogen is the cost of producing it. This requires either large amounts of electricity to produce it from water, or the use of carbon capture technologies if the hydrogen is produced from fossil fuels. Almost all hydrogen produced today comes from fossil fuels without carbon capture, resulting in close to 900 million tonnes of CO2 emissions, equivalent to the combined CO2 emissions of the United Kingdom and Indonesia.

Investments and focused policies are needed to close the price gap between low-carbon hydrogen and emissions-intensive hydrogen produced from fossil fuels. Depending on the prices of natural gas and renewable electricity, producing hydrogen from renewables can cost between 2 and 7 times as much as producing it from natural gas without carbon capture. But with technological advances and economies of scale, the cost of making hydrogen with solar PV electricity can become competitive with hydrogen made with natural gas, as set out in the IEA’s Roadmap to Net Zero by 2050.

Global capacity of electrolysers, which produce hydrogen from water using electricity, doubled over the last five years, with about 350 projects currently under development and another 40 projects in early stages of development. Should all these projects be realised, global hydrogen supply from electrolysers – which creates zero emissions provided the electricity used is clean – would reach 8 million tonnes by 2030. This is a huge increase from today’s level of less than 50 000 tonnes – but remains well below the 80 million tonnes required in 2030 in the IEA pathway to net zero emissions by 2050.

Practically all hydrogen use in 2020 was for refining and industrial applications. Hydrogen can be used in many more applications than those common today, the report highlights. Hydrogen has important potential uses in sectors where emissions are particularly challenging to reduce, such as chemicals, steel, long-haul trucking, shipping and aviation.

The broader issue is that policy action so far focuses on the production of low-carbon hydrogen while the necessary corresponding steps that are required to build demand in new applications is limited. Enabling greater use of hydrogen in industry and transport will require much stronger policy measures to foster the construction of the necessary storage, transmission and charging facilities.

Countries with hydrogen strategies have committed at least USD 37 billion to the development and deployment of hydrogen technologies, and the private sector has announced additional investment of USD 300 billion. But putting the hydrogen sector on path consistent with global net zero emissions by 2050 requires USD 1 200 billion of investment between now and 2030, the IEA estimates.

The Global Hydrogen Review lays out a series of recommendations for near term-action beyond just mobilising investment in research, production and infrastructure. It highlights that governments could stimulate demand and reduce price differences through carbon pricing, mandates, quotas and hydrogen requirements in public procurement. In addition, international cooperation is needed to establish standards and regulations, and to create global hydrogen markets that could spur demand in countries with limited potential to produce low-carbon hydrogen and create export opportunities for countries with large renewable energy supplies or large CO2 storage potential. 

Continue Reading

Energy News

IRENA and SolarPower Europe Strengthen Coordinated Actions in the Solar Industry

Published

on

The International Renewable Energy Agency (IRENA) and SolarPower Europe are strengthening their cooperation by signing a partnership agreement.  As a member of the IRENA Coalition for Action since 2014, SolarPower Europe has been actively involved in various IRENA activities promoting the wider and faster uptake of renewable energy, including solar energy.

By leveraging on each other’s strengths, IRENA and SolarPower Europe aim to jointly advance progress towards a cleaner energy future. Signed by IRENA’s Director-General Francesco La Camera and SolarPower Europe’s CEO Walburga Hemetsberger, the agreement will allow both parties to coordinate and support the implementation of measures to scale up solar energy deployment globally and ensure a just and inclusive energy transition.

“Solar energy is now the cheapest source of electricity generation in many parts of the world and continues to contribute to the largest gains in renewable energy capacity globally. We need to leverage this momentum by maximising the sector’s potential through collective actions. Cooperation is key to expedite progress in realising IRENA’s 1.5°C scenario. By entering this agreement with SolarPower Europe, we hope to tap into the strengths and visions of multiple solar energy players, in particular from the private sector,” said Francesco La Camera, Director-General of IRENA.

Despite the COVID-19 pandemic, solar photovoltaic (PV) capacity reached almost 714 GW in 2020 globally, amounting to an increase of 20% from the previous year, and proving its competitiveness and resilience. Solar PV jobs reached 3.8 million in 2019 worldwide, representing almost a third of all renewable energy jobs. In the urban context, rooftop solar PV is a practical solution to increase access to affordable and reliable electricity for residential, commercial, industrial and public buildings, while also decarbonising the power systems. In many countries, solar PV continues to play a key role to achieve access to 100% electricity in line with the Sustainable Development Goals and broader climate objectives.

“As the cheapest and most easily deployed clean energy technology today, solar can significantly contribute to SDG 7, which aims to ensure energy for all by 2030. Globally, solar energy is continuing to break installation records, and is on track to reach Terawatt scale by 2022,” Walburga Hemetsberger, Chief Executive Officer of SolarPower Europe said. “With 70 per cent of current global power still generated from non-renewable polluting energy, we need much more ambition from policymakers to accelerate the clean energy transition. We look forward to working with IRENA to scale up global solar energy installation, which will help us meet the Paris Agreement targets.”

With this agreement, IRENA and SolarPower Europe will be able to exchange knowledge, data and information in an effort to support and strengthen domestic supply chains and investments in solar energy development. The two organisations will also collaborate to track and analyse latest trends in the private sector, including costs and innovations, as well as the socio-economic benefits of solar energy, to inform the policy decision-making process.

Continue Reading

Publications

Latest

Economy1 hour ago

Is Myanmar an ethical minefield for multinational corporations?

Business at a crossroads Political reforms in Myanmar started in November 2010 followed by the release of the opposition leader,...

Finance2 hours ago

Logistics giant commits to Gothenburg Green City Zone

DB Schenker is collaborating with Business Region Göteborg to scale up electric freight transport as part of the Gothenburg Green...

Finance3 hours ago

Early signs of collective progress as banks work to implement the Principles for Responsible Banking

A new report summarising the progress made by banks who have signed the Principles for Responsible Banking finds that signatories...

EU Politics4 hours ago

Focus on the recovery from the pandemic at the 19th EU Regions Week

The annual European Week of Regions and Cities has shown how the EU and national and regional governments can support...

Tech News5 hours ago

EU Digital COVID Certificate: a global standard with more than 591 million certificates

Commission adopted a report on the EU Digital COVID Certificate  and its implementation across the EU. The report shows that...

Science & Technology7 hours ago

U.S. Sanctions Push Huawei to Re-Invent Itself and Look Far into the Future

There is no doubt that the return of Huawei’s CFO Meng Wanzhou to Beijing marks a historic event for the...

Tech News9 hours ago

Why cybersecurity in the EU should matter to you

From stolen data to blocked hospital systems: cyberattacks can have perilous consequences. Learn more about cybersecurity and its importance. The...

Trending