Connect with us

Energy

A Hydrogen Strategy for a climate neutral Europe

Published

on

Hydrogen can be used as a feedstock, a fuel or an energy carrier and storage, and has many possible applications across industry, transport, power and buildings sectors. Most importantly, it does not emit CO2 and does not pollute the air when used. It is therefore an important part of the solution to meet the 2050 climate neutrality goal of the European Green Deal.

It can help to decarbonise industrial processes and economic sectors where reducing carbon emissions is both urgent and hard to achieve. Today, the amount of hydrogen used in the EU remains limited, and it is largely produced from fossil fuels. The aim of the strategy is to decarbonise hydrogen production – made possible by the rapid decline in the cost of renewable energy and acceleration of technology developments – and to expand its use in sectors where it can replace fossil fuels.

How is hydrogen produced and what is its impact on the climate?

Hydrogen may be produced through a variety of processes. These production pathways are associated with a wide range of emissions, depending on the technology and energy source used and have different costs implications and material requirements. In this Communication:

  • ‘Electricity-based hydrogen’ refers to hydrogen produced through the electrolysis of water (in an electrolyser, powered by electricity), regardless of the electricity source. The full life-cycle greenhouse gas emissions of the production of electricity-based hydrogen depends on how the electricity is produced.
  • ‘Renewable hydrogen’ is hydrogen produced through the electrolysis of water (in an electrolyser, powered by electricity), and with the electricity stemming from renewable sources. The full life-cycle greenhouse gas emissions of the production of renewable hydrogen are close to zero[1]. Renewable hydrogen may also be produced through the reforming of biogas (instead of natural gas) or biochemical conversion of biomass, if in compliance with sustainability requirements.
  • Clean hydrogen refers to renewable hydrogen
  • ‘Fossil-based hydrogen’ refers to hydrogen produced through a variety of processes using fossil fuels as feedstock, mainly the reforming of natural gas or the gasification of coal. This represents the bulk of hydrogen produced today. The life-cycle greenhouse gas emissions of the production of fossil-based hydrogen are high.
  • ‘Fossil-based hydrogen with carbon capture’ is a subpart of fossil-based hydrogen, but where greenhouse gases emitted as part of the hydrogen production process are captured. The greenhouse gas emissions of the production of fossil-based hydrogen with carbon capture or pyrolysis are lower than for fossil-fuel based hydrogen, but the variable effectiveness of greenhouse gas capture (maximum 90%) needs to be taken into account.
  • ‘Low-carbon hydrogen’ encompasses fossil-based hydrogen with carbon capture and electricity-based hydrogen, with significantly reduced full life-cycle greenhouse gas emissions compared to existing hydrogen production.
  • Hydrogen-derived synthetic fuels refer to a variety of gaseous and liquid fuels on the basis of hydrogen and carbon. For synthetic fuels to be considered renewable, the hydrogen part of the syngas should be renewable. Synthetic fuels include for instance synthetic kerosene in aviation, synthetic diesel for cars, and various molecules used in the production of chemicals and fertilisers. Synthetic fuels can be associated with very different levels of greenhouse gas emissions depending on the feedstock and process used. In terms of air pollution, burning synthetic fuels produces similar levels of air pollutant emissions than fossil fuels.

What kind of hydrogen will the strategy support?

Renewable hydrogen is the focus of the strategy, as it has the biggest decarbonisation potential and is therefore the most compatible option with the EU’s climate neutrality goal.

The strategy also recognises the role of other low-carbon hydrogen production processes in a transition phase, for example through the use of carbon capture and storage or other forms of low-carbon electricity, to clean existing hydrogen production, reduce emissions in the short term and scale up the market.

The differentiation between types of hydrogen will allow to tailor supportive policy frameworks in function of the carbon emissions reduction benefits of hydrogen based on benchmarks and certification.

How quickly can we roll out this promising technology?

The strategy foresees a gradual trajectory, with three phases of development of the clean hydrogen economy, at different speed across different industry sectors:

  • In In the first phase (2020-24) the objective is to decarbonise existing hydrogen production for current uses such as the chemical sector, and promote it for new applications. This phase relies on the installation of at least 6 Gigawatt of renewable hydrogen electrolysers in the EU by 2024 and aims at producing up to one million tonne of renewable hydrogen. In comparison to the current situation, approximately 1 Gigawatt of electrolysers are installed in the EU today.
  • In the second phase (2024-30) hydrogen needs to become an intrinsic part of an integrated energy system with a strategic objective to install at least 40 Gigawatt of renewable hydrogen electrolysers by 2030 and the production of up to ten million tonnes of renewable hydrogen in the EU. Hydrogen use will gradually be expanded to new sectors including steel-making, trucks, rail and some maritime transport applications. It will still mainly be produced close to the user or close the renewable energy sources, in local ecosystems.
  • In a third phase, from 2030 onwards and towards 2050, renewable hydrogen technologies should reach maturity and be deployed at large scale to reach all hard-to-decarbonise sectors where other alternatives might not be feasible or have higher costs.

How does hydrogen support the European Green Deal?

Alongside renewable electrification and a more efficient and circular use of resources – as set out in the Energy Sector Integration Strategy – large-scale deployment of clean hydrogen at a fast pace is key for the EU to achieve its high climate ambitions. It is the missing part in the puzzle to a fully decarbonised economy.

Hydrogen can support the transition towards an energy system relying on renewable energy by balancing variable renewable energy. It offers a solution to decarbonise heavily-emitting industry sectors relying on fossil fuels, where conversion to electricity is not an option. And it emits no CO2 and almost no air pollution.

How can hydrogen support the recovery, growth and jobs?

Investment in hydrogen will be a growth engine which will be critical in the context of recovery from the COVID-19 crisis. The Commission’s recovery plan highlights the need to unlock investment in key clean technologies and value chains, to foster sustainable growth and jobs. It stresses clean hydrogen as one of the essential areas to address in the context of the energy transition, and mentions a number of possible avenues to support it. 

Moreover, Europe is highly competitive in clean hydrogen technologies manufacturing and is well positioned to benefit from a global development of clean hydrogen as an energy carrier. Cumulative investments in renewable hydrogen in Europe could be up to €180-470 billion by 2050, and in the range of €3-18 billion for low-carbon fossil-based hydrogen. Combined with EU’s leadership in renewables technologies, the emergence of a hydrogen value chain serving a multitude of industrial sectors and other end uses could employ up to 1 million people, directly and indirectly. Analysts estimate that clean hydrogen could meet 24% of world energy demand by 2050, with annual sales in the range of €630 billion.

Is renewable hydrogen cost-competitive?

Today, neither renewable hydrogen nor fossil-based hydrogen with carbon capture are cost-competitive against fossil-based hydrogen. Current estimated costs for fossil-based hydrogen are around 1.5 €/kg for the EU, highly dependent on natural gas prices, and disregarding the cost of CO2. Estimated costs for fossil-based hydrogen with carbon capture and storage are around 2 €/kg, and renewable hydrogen 2.5-5.5 €/kg.

That said, costs for renewable hydrogen are going down quickly. Electrolyser costs have already been reduced by 60% in the last ten years, and are expected to halve in 2030 compared to today with economies of scale. In regions where renewable electricity is cheap, electrolysers are expected to be able to compete with fossil-based hydrogen in 2030. These elements will be key drivers of the progressive development of hydrogen across the EU economy. 

How will the strategy support investments in the hydrogen economy?

The strategy outlines a comprehensive investment agenda, including investments for electrolysers, but also for the renewable power production capacity required to produce the clean hydrogen, transport and storage, retrofitting of existing gas infrastructure, and carbon capture and storage.

To support these investments and the emergence of a whole hydrogen eco-system, the Commission launches the European Clean Hydrogen Alliance – as announced in the Commission’s New Industrial Strategy. The Alliance will play a crucial role in delivering on this Strategy and supporting investments to scale up production and demand. It will bring together the industry, national, regional and local public authorities and the civil society. Through interlinked, sector-based CEO round tables and a policy-makers’ platform, the Alliance will provide a broad forum to coordinate investment by all stakeholders and engage civil society. The key deliverable of the European Clean Hydrogen Alliance will be to identify and build up a clear pipeline of viable investment projects.

What EU financial instruments can be used for investing in hydrogen?

The Commission will also follow up on the recommendations identified in a report by the Strategic Forum for Important Projects of Common European Interest (IPCEI) to promote well-coordinated or joint investments and actions across several Member States aimed at supporting a hydrogen supply chain.

Additionally, as part of the new recovery instrument Next Generation EU, the InvestEU programme will see its capacities more than doubled. It will support the deployment of hydrogen by incentivising private investment, with a strong leverage effect.

A number of Member States have identified renewable and low-carbon hydrogen as a strategic element of their National Energy and Climate Plans. These plans will have to be taken into account when designing the national recovery and resilience plans in the context of new Recovery and Resilience Facility.

Furthermore, the European Regional Development Fund and the Cohesion Fund, which will benefit from a top-up in the context of the new initiative REACT-EU, will continue to be available to support the green transition. The possibilities offered to carbon intensive regions under the Just Transition Mechanism should also be fully explored.

Synergies between the Connecting Europe Facility for Energy and the Connecting Europe Facility for Transport will be harnessed to fund dedicated infrastructure for hydrogen, repurposing of gas networks, carbon capture projects, and hydrogen refuelling stations.

In addition, the EU ETS ETS Innovation Fund, which will pool together around €10 billion to support low-carbon technologies over the period 2020-2030, has the potential to facilitate first-of-a-kind demonstration of innovative hydrogen-based technologies. A first call for proposals under the Fund was launched on 3 July 2020.

The Commission will also provide targeted support to build the necessary capacity for preparation of financially sound and viable hydrogen projects, where this is identified as a priority in the relevant national and regional programmes, through dedicated instruments (e.g. InnovFin Energy Demonstration Projects, InvestEU) possibly in combination with advisory and technical assistance from the Cohesion Policy, from the European Investment Bank Advisory Hubs or under Horizon Europe.

Can the EU be a global leader in clean hydrogen technologies?

The international dimension is an integral part of the EU approach. Clean hydrogen offers new opportunities for re-designing Europe’s energy partnerships with both neighbouring countries and regions and its international, regional and bilateral partners, advancing supply diversification and helping design stable and secure supply chains.

The EU has supported research and innovation on hydrogen for many years, giving it a head start on the development of technologies and high profile projects, and establishing EU leadership for technologies such as electrolysers, hydrogen refuelling stations and large fuel cells. The strategy aims to consolidate EU leadership by ensuring a full supply chain that serves the European economy, but also by developing its international hydrogen agenda.

This includes in particular working closely with partners in the Eastern and Southern Neighbourhood. In this context, the EU should actively promote new opportunities for cooperation on clean hydrogen with neighbouring countries and regions, as a way to contribute to their clean energy transition and foster sustainable growth and development.

The interest in clean hydrogen is growing globally with several other countries developing dedicated research programmes and an international hydrogen market is likely to develop. The EU will globally promote sound common standards and methodologies to ensure that a global hydrogen market contributes to sustainability and achievement of climate goals.

What uses does the Commission foresee for hydrogen?

Hydrogen is a key solution to cut greenhouse gas emissions in sectors that are hard to decarbonise and where electrification is difficult or impossible. This is the case of industrial sectors such as steel production, or heavy-duty transport for example. As a carbon-free energy carrier, hydrogen would also allow for transport of renewable energy over long distances and for storage of large energy volumes.

An immediate application in industry is to reduce and replace the use of carbon-intensive hydrogen in refineries, the production of ammonia, and for new forms of methanol production, or to partially replace fossil fuels in steel making. Hydrogen holds the potential to form the basis for zero-carbon steel making processes in the EU, envisioned under the Commission’s New Industrial Strategy.

In transport, hydrogen is also a promising option where electrification is more difficult. For example in local city buses, commercial fleets or specific parts of the rail network. Heavy-duty vehicles including coaches, special purpose vehicles, and long-haul road freight could also be decarbonised by using hydrogen as a fuel. Hydrogen fuel-cell trains could be extended and hydrogen could be used as a fuel for maritime transport on inland waterways and short-sea shipping.  

In the long term, hydrogen can also become an option to decarbonise the aviation and maritime sector, through the production of liquid synthetic kerosene or other synthetic fuels.

Is hydrogen safe?

Hydrogen is a highly flammable gas and care must be taken that hydrogen is produced, stored, transported and utilised in a safe manner. Standards are already in place, and the European industry has built up significant experience with already more than 1500 km of dedicated hydrogen pipelines in place.

With hydrogen consumption expanding to other markets and end-use applications, the strategy points out that the need for safety standards from production, transport and storage to use is critical, include a system to monitor and verify.

What does the strategy foresee in terms of infrastructure development?

Appropriate infrastructure is a condition for the EU-wide development of hydrogen, but the specific infrastructure needs will depend on the patterns of development both in terms of production and use.

Hydrogen demand will largely be met by localised production in an initial phase, for example in industrial clusters or for hydrogen production for refuelling stations. However, local networks and more extensive transport options will be required for further development. Different options will have to be considered, including the repurposing of existing gas infrastructure.

Continue Reading
Comments

Energy

Is it finally time for hydrogen?

Published

on

After decades of debates with a high level of ‘ideological pollution’, also partly thanks to the paradoxical impetus provided by the economic consequences of the Covid-19 pandemic, the issue of promoting an economic renaissance – strongly characterised not only by technological innovation but also by a strong, concrete and visible commitment to environmental protection – has finally been placed at the top of the list of government priorities for all world’s most industrialised countries.

At the last G20 Summit on sustainable development, Europe, China and the United States agreed to undertake joint and coordinated efforts to achieve the goal of gradually “decarbonising” the planet by committing themselves to cutting the use of fossil fuels in energy production in favour of renewable energy from air, sun and sea.

The “Green Deal”, which the European Union has been planning on paper for years, is about to become a reality since it was included in the “recovery plan”, the huge financial commitment destined to help the European countries’ economies to emerge from the quicksand of the pandemic in the coming years.

As many as 47 billion euros are earmarked for Italy to be spent on research and exploitation of non-polluting energy sources that will free us from the use of fossil fuels and enable us to grow without harming the ecosystem and the climate balance.

After decades of extraordinary economic growth, which has nevertheless cost a very high price in terms of environmental pollution, China has decided to further develop the sustainable growth initiatives undertaken as part of the 13th five-year plan – concrete initiatives that have enabled it to cut the amount of CO2released into the atmosphere by 12%, with the 14th five-year plan for 2020/2025, an ambitious but achievable project to create an ‘ecological civilisation’.

In this regard, during a meeting of the Politburo of the Central Committee of the Communist Party of China (CPC) dedicated to the “collective study on the theme of the achievement of ecological civilisation”, President Xi Jinping stated bluntly: “we must consider the reduction of carbon emissions as the strategic direction of the 14th Five-Year Plan to promote the reduction of pollution and carbon emissions and to pursue the transformation of the green economic and social development model to achieve the goal of qualitative improvement of the ecological environment”.

The fact that these are not mere formulas and words of a clever politician who has sensed and caught wind of “modernity” is demonstrated by the real and incisive commitment that the Chinese leadership has made in the field of renewable energy, thanks to the personal involvement of the young and dynamic Minister of Energy Resources, Lu Hao, who wants to make Shenzhen a pilot centre for research and development in the production of energy from the sea through the National Ocean Technology Centre.

It was precisely in Shenzhen that the Marine Economy Expo was held earlier this year, showcasing advances in wave energy research and production and addressing the use of hydrogen as a potential source of clean energy.

Hydrogen is the most abundant chemical element in the universe.

However, it is not available in nature in its pure gaseous form, but “lives” only when bound with other elements, such as oxygen in water (two hydrogen and one oxygen atom, H2O) and methane (one carbon and four hydrogen atoms, CH4).

What can hydrogen be useful for once it is detached from its companion elements in water and gas?

The answer is simple: it is a light gas, lighter than air, with no toxic characteristics, which, if properly extracted and stored, can provide energy for heating houses, propelling cars, trains, planes and all other means of transport, and can potentially replace all current non-renewable energy sources, such as coal or oil, to provide clean energy for all industrial production processes.

However, separating hydrogen from oxygen and carbon is not a simple, low-cost process: firstly, its extraction from methane, so as to obtain the so-called “grey hydrogen”, requires huge amounts of traditional energy and is therefore a source of collateral greenhouse gases and pollution.

In order to produce “clean” hydrogen, instead, the so-called “green hydrogen” must be extracted from water by separating it from oxygen using electrolysis. However, electrolysis has the disadvantage that it requires large amounts of electricity to work- hence, in order to produce clean energy from hydrogen, we find ourselves in the paradoxical situation of having to consume large amounts of electricity at high cost and with equally high CO2 emissions.

This paradox has held back the production of industrial hydrogen, until the idea of creating a “green” hydrogen production cycle using renewable energies such as wind, solar or marine energy has begun to emerge.

With the use of this particular process, a virtuous and very simple cycle is created: hydrogen is extracted from sea water and the energy produced by wave motion and sea currents is used to produce the energy needed for water electrolysis.

Hydrogen is a practically inexhaustible source of renewable energy, and its production on an industrial scale could solve the “dialectic” between development and the environment once and for all.

In the summer of last year, the European Union had already planned an initial implementation of the “Green Deal” with a 470 billion euro investment project called the “hydrogen energy strategy”, which aims to create the conditions to enable all European partners to produce “green” hydrogen through electrolysis in view of achieving – by the end of 2024 – the annual production of at least one million tonnes of hydrogen in the gaseous state, with the widespread use of electrolysis equipment with a single power of 100 megawatts.

As mentioned above, the “recovery plan” for Italy envisages an allocation of 47 billion euros for research and development in renewable energies and particularly in the field of “green” energy production, as recently stated by the Minister for Ecological Transition, Roberto Cingolani.

Other European countries are also betting on the future of hydrogen.

Spain has already earmarked 1.5 billion euros from its national budget for national hydrogen production over the next two years, while Portugal wants to invest a large part of the 186 billion euros allocated to it by the “recovery plan” in projects dedicated to the production of low-cost “green” hydrogen.

Italy is at the forefront of research into marine energy production equipment.

The Polytechnic University of Turin – with the support of ENI, CDP, Fincantieri and Terna – has developed a cutting-edge technology for producing energy from wave motion.

This is the Inertial Sea Wave Energy Converter (ISWEC), a machine housed inside a 15-metre-long hull which – thanks to a system of gyroscopes and sensors – is able to produce 250 megawatts of “green” energy a year, occupying a marine area of just 150 square metres, without any negative impact on the ecosystem.

Italy can rightly claim to be at the forefront of research and production of energy from sea wave motion, and can therefore rightly take the lead of those who plan to produce “green” hydrogen using the energy generated by wave motion for the energy needed for electrolysis: a virtuous cycle that is potentially the protagonist of a future industrial revolution.

This explains the interest and attention paid by China’s Ministry of Energy Resources and its Minister, Lu Hao, to Italy and to some of its companies.

Minister Lu Hao has turned the city of Shenzhen into what is defined as a “global ocean central city”, which – also thanks to a joint venture, promoted by the International World Group, between Italy’s Eldor and China’s National Ocean Technology Centre -is set to become the world’s pilot centre for the production of clean energy from sea waves.

In a not too distant future, with the smart support of all Italian institutions – starting with the Ministry for Ecological Transition – together with other European partners and probably with the support, albeit suspicious, of the United States led by President Biden -Italy and China will be able to launch and develop the revolution of the “blue economy”, the economy that starts from the sea, the latest fashion in terms of smart, clean and sustainable energy production.

Continue Reading

Energy

Nord Stream 2: To Gain or to Refrain? Why Germany Refuses to Bend under Sanctions Pressure

Published

on

pipeline nord stream

The chances of the sanctions war around Nord Stream 2 to rage on after the construction of the pipeline is finally over seem to be high. That said, we have to admit, with regret or with joy, that it will be completed, and for the following reasons:

Germany, like any other European country, has set itself the task of abandoning coal and nuclear energy within the next few decades. In reality, however, there is no alternative to coal and nuclear energy. Simultaneously forsaking gasoline and diesel cars, which is something Europe dreams about, will inevitably increase the EU’s demand for electricity. However, green energy is unlikely to satisfy Europe’s energy needs any time soon. Hopes for cheap thermonuclear energy are unlikely to come true until 2050 at best. Therefore, in the coming decades, natural gas, Russian and other, will obviously remain the most convenient and cheapest fuel. At the same time, regardless of where the pipelines run, Russian natural gas will account for a significant share of the European and world markets. This is not politics – just a simple economic reality.

Despite the attributed environmental benefits of Nord Stream 2 and the Russian natural gas, the positive impact of replacing coal with natural gas remains largely unclear as it depends on the volume of methane leaking from the processes of gas extraction and transportation. Nonetheless, Nord Stream 2 presents itself as an attractive alternative for the EU as it would help decrease gas prices because Russia will be able to supply the EU with higher amounts of gas, thus, decreasing demand for expensive imported liquified natural gas (LNG).

Nord Stream 2, although a privately-financed commercial project, has political implications. Politics and economics are too closely intertwined, and in the short term at that. The abandonment of Nord Stream 2 will hardly weaken Russia and force the Kremlin to introduce democratic reforms. This will only result in Europe losing a good opportunity to effectively ensure its energy independence, as well as that of its Baltic and Eastern European allies, many of whom, unable to fully integrate themselves into European energy systems, continue to buy electricity from Russia.

At the same time, Nord Stream 2 will help make Germany a guarantor of the EU’s energy security. More and more people now feel that the sanctions against the Russian-German project are essentially meant to undermine Germany’s growing influence. However, even this abnormally cold winter has shown that political problems and competition for influence in the EU are taking a back seat to energy security issues. The disruption in LNG supplies from the United States has only underscored Europe’s need for the Nord Stream. Besides, when completed and controlled by Germany, Nord Stream 2 could be used as a means of pressure against Russia and Russian supplies which is exactly what Brussels and Washington want.

Yet, the United States continues to oppose the Nord Stream 2 project and, thus, trans-Atlantic tensions between Germany and the United States are on the rise. Like the Obama and Trump Administrations which opposed Nord Stream 2 and introduced tangible steps to halt its progress, the Biden Administration is too faced with a lot of pressure by American lobbyists and members of the Congress in order to push back and halt Nord Stream 2 progress and efforts. However, until this very day, US President Biden and his administration did not sanction the project, which could be understood in lights of Biden’s struggling efforts to repair relations with Germany after the Trump Administration’s accusations towards and troop withdrawals from Germany. Thus, although the current administration under Biden still opposes Nord Stream 2, it is reluctant to impose any sanctions because its priorities lie with repairing US-German ties in the Post-Trump era.

The United States is not the only opposing International player to Nord Stream 2, but even many Eastern European countries, including Slovakia, Ukraine and Poland are against the pipeline project in fear of geo-economic insecurity. For instance, it is believed that Nord Stream 2 would cost Ukraine approximately $2 to $3 billion in losses as the transit volumes shift from Ukraine to Nord Stream 2. Another argument put forth by European opposition to Nord Stream 2 is that it would undermine the EU’s energy solidarity or even a potential “Energy Union”; however, Germany and supporters of Nord Stream 2 often highlight that the imported Russian gas would not only benefit Germany, but rather all of Europe. The pipeline is expected upon completion to be able to transport 55 billion cubic meters of Russian Natural Gas to Germany and other clients in Europe!

Despite oppositions, threats of sanctioning and the earlier construction halt in December 2019, it seems that the Gazprom-Pipeline Nord Stream 2 will be completed and will go online soon as the Biden Administration continues to refrain from imposing sanctions.

Continue Reading

Energy

How Azerbaijan changed the energy map of the Caspian Sea

Published

on

image source: azertag.az

Since the collapse of the Soviet Union, crude oil and natural gas have been playing a key role in the geopolitics of the Caspian region. Hydrocarbon revenues became an important source of economic growth for the Caspian Basin countries such as Azerbaijan, Kazakhstan, and Turkmenistan. Shortly after gaining independence in the early 1990s, the Caspian states implemented energy policies that protect their national interests. According to the BP 2020Statistical Review of World Energy total proved energy reserves of the Caspian states are: Kazakhstan has30.00 billion barrels of oil and 2.7 trillion cubic meters of gas, Azerbaijan 7.00billion barrels of oil and 2.8 trillion cubic meters of gas, and Turkmenistan 0.6billion barrels of oil and 19.5 trillion cubic meters of gas.

Such rich hydrocodone reserves allowed the Caspian states to contribute significantly to the global energy markets. Today, the Caspian states are supplying oil and natural gas to various energy markets, and they are interested in increasing export volume and diversification of export routes. In comparison with Turkmenistan and Kazakhstan, which supply energy sources mainly to China and Russia, Azerbaijan established a backbone to export energy sources to Europe and Transatlantic space. As the Caspian Sea is landlocked, and its hydrocarbon resources located at a great distance from the world’s major energy consumers, building up energy infrastructure was very important to export oil and gas.

To this end, Azerbaijan created the milestone for delivery of the first Caspian oil and natural gas by implementing mega energy projects such as Baku-Tbilisi-Ceyhan (BTC) oil pipeline and Southern Gas Corridor (SGC).Now, one can say that both energy projects resulted from successful energy policy implemented by Azerbaijan. Despite the COVID-19 recession, the supply of the Azerbaijani oil to the world energy markets continued. In general, the BTC pipeline carries mainly Azeri-Chirag-Gunashli (ACG) crude oil and Shah Deniz condensate from Azerbaijan. Also, other volumes of crude oil and condensate continue to be transported via BTC, including volumes from Turkmenistan, Russia and Kazakhstan. As it is clear, the BTC pipeline linked directly the Caspian oil resources to the Western energy markets. The BTC pipeline exported over 27.8 million tons of crude oil loaded on 278 tankers at Ceyhan terminal in 2020. The European and the Asian countries became the major buyers of the Azerbaijani oil, and Italy (26.2%) and China (14%) became two major oil importers from Azerbaijan.

The successful completion of the SGC also strengthened Azerbaijani position in the Caspian region. The first Caspian natural gas to the European energy markets has been already supplied via Trans Adriatic Pipeline (TAP) in December 2020, which is the European segment of the SGC. According to TAP AG consortium,a total of one billion cubic metres (bcm) of natural gas from Azerbaijan has now entered Europe via the Greek interconnection point of Kipoi, where TAP connects to the Trans Anatolian Pipeline (TANAP). The TAP project contributes significantly to diversification of supply sources and routes in Europe.

Another historical event that affected the Caspian region was the rapprochement between Turkmenistan and Azerbaijan. The MoU on joint exploration of “Dostluk/Friendship” (previously called Kapaz in Azerbaijani and Sardar in Turkmen) offshore field between Azerbaijan and Turkmenistan was an important event that will cause positive changes in the energy map of the Caspian Sea.

The Assembly of Turkmenistan and Azerbaijan Parliament have already approved the agreed Memorandumon joint exploration, development, and deployment of hydrocarbon resources at the “Dostluq” field. It should be noted that for the first time two Caspian states agreed to cooperate in the energy sector, which opens a window for the future Trans-Caspian Pipeline (TCP) from Turkmenistan to Azerbaijan. Such cooperation and the future transit of Turkmen oil and gas via the existing energy infrastructure of Azerbaijan will be a milestone for trans-regional cooperation.

The supply of the Caspian and Central Asian natural gas to European energy markets was always attractive. Therefore, the TCP is a strategic energy project for the US and EU. After the signing of the Caspian Convention, the EU officials resumed talks with Turkmenistan regarding the TCP. The May 2019 visit of the Turkmen delegation headed by the Advisor of the President of Turkmenistan on oil and gas issues was aimed at holding technical consultations between Turkmenistan and the EU. Turkmen delegation met with the representatives of the General Directorate on Energy of the European Commission and with the representatives of “British Petroleum,” “Shell” and “Total” companies. TCP is a project which supports diversification of gas sources and routes for the EU, and the gas pipeline to the EU from Turkmenistan and Azerbaijan via Georgia and Turkey, known as the combination of “Trans-Caspian Gas Pipeline” (TCP), “South-Caucasus Pipeline Future Expansion” (SCPFX) became the “Project of Common Interest” for the EU.

Conclusively, Azerbaijan is a key energy player in the region. Mega energy projects of the country play an important role to deliver Caspian oil and gas to global energy markets. However, the Second Karabakh War has revealed the importance of peace and security in the region. The BTC pipeline and the Southern Gas Corridor linking directly the Caspian energy to Western energy markets were under Armenian constant threat. As noted by Hikmat Hajiyev, the Foreign Policy Advisor to the President, “Armenia fired cluster rocket to BTC pipeline in Yevlak region”. Fortunately, during the Second Karabakh War, Azerbaijan protected its strategic infrastructure, and there was no energy disruption. But attacks on critical energy infrastructure revealed that instability in the region would cause damages to the interests of many states.

In the end, Azerbaijan changed the energy map of the Caspian Sea by completing mega energy projects, as well as creating the milestone for energy cooperation in the Caspian region. After Azerbaijan’s victory in the Second Karabakh War, the country supports full regional economic integration by opening all transport and communication links. Now, the importance of the Caspian region became much more important, and Azerbaijan supports the idea of the exportation of natural gas from Turkmenistan and the Mediterranean via SGC. Such cooperation will further increase the geostrategic importance of the SGC, as well as Azerbaijan’s role as a transit country.

Continue Reading

Publications

Latest

Africa16 mins ago

Hydro-projects in Africa: Interview with Vladislav Vasilyev

As widely known, Russia plans to hold the second Russia-Africa summit in 2022, as a further step to make inroads...

Europe1 hour ago

Belgrade and Pristina: Will a territorial exchange really happen?

The European Union is dialing up pressure on Serbia and Kosovo in an effort to convince Belgrade and Pristina to...

Americas6 hours ago

Weakness or calculation? How the pandemic undermined the US world leadership

Anyone watching the numerous doomsday movies, happily churned out by Hollywood, will see American doctors saving the planet from space-borne...

Defense10 hours ago

Prospects for a Settlement of the Libyan Conflict: Three Scenarios of the Mid-Term Forecast

More than ten years ago, in February 2011, the Arab Spring began in Libya. The armed uprising quickly escalated into...

New Social Compact12 hours ago

Discerning the Human Element Amid the Pandemic

“We are not human beings having a spiritual experience. We are spiritual beings having a human experience.” – Pierre Teilhard de...

Arts & Culture14 hours ago

“Kharibulbul” festival represents a multi-ethnic, multi-confessional and multicultural Azerbaijan

As a country of multiculturalism, Azerbaijan promotes the cross-cultural dialogue inside the country, but also at the regional level. The...

Europe16 hours ago

A leaderless ship: The Bulgaria’s political crisis and the storm to come

Internal and international tensions Politics tends to develop in a complex conundrum in all Balkan countries. Thus, never can observers...

Trending