Connect with us

Energy

A Hydrogen Strategy for a climate neutral Europe

Published

on

Hydrogen can be used as a feedstock, a fuel or an energy carrier and storage, and has many possible applications across industry, transport, power and buildings sectors. Most importantly, it does not emit CO2 and does not pollute the air when used. It is therefore an important part of the solution to meet the 2050 climate neutrality goal of the European Green Deal.

It can help to decarbonise industrial processes and economic sectors where reducing carbon emissions is both urgent and hard to achieve. Today, the amount of hydrogen used in the EU remains limited, and it is largely produced from fossil fuels. The aim of the strategy is to decarbonise hydrogen production – made possible by the rapid decline in the cost of renewable energy and acceleration of technology developments – and to expand its use in sectors where it can replace fossil fuels.

How is hydrogen produced and what is its impact on the climate?

Hydrogen may be produced through a variety of processes. These production pathways are associated with a wide range of emissions, depending on the technology and energy source used and have different costs implications and material requirements. In this Communication:

  • ‘Electricity-based hydrogen’ refers to hydrogen produced through the electrolysis of water (in an electrolyser, powered by electricity), regardless of the electricity source. The full life-cycle greenhouse gas emissions of the production of electricity-based hydrogen depends on how the electricity is produced.
  • ‘Renewable hydrogen’ is hydrogen produced through the electrolysis of water (in an electrolyser, powered by electricity), and with the electricity stemming from renewable sources. The full life-cycle greenhouse gas emissions of the production of renewable hydrogen are close to zero[1]. Renewable hydrogen may also be produced through the reforming of biogas (instead of natural gas) or biochemical conversion of biomass, if in compliance with sustainability requirements.
  • Clean hydrogen refers to renewable hydrogen
  • ‘Fossil-based hydrogen’ refers to hydrogen produced through a variety of processes using fossil fuels as feedstock, mainly the reforming of natural gas or the gasification of coal. This represents the bulk of hydrogen produced today. The life-cycle greenhouse gas emissions of the production of fossil-based hydrogen are high.
  • ‘Fossil-based hydrogen with carbon capture’ is a subpart of fossil-based hydrogen, but where greenhouse gases emitted as part of the hydrogen production process are captured. The greenhouse gas emissions of the production of fossil-based hydrogen with carbon capture or pyrolysis are lower than for fossil-fuel based hydrogen, but the variable effectiveness of greenhouse gas capture (maximum 90%) needs to be taken into account.
  • ‘Low-carbon hydrogen’ encompasses fossil-based hydrogen with carbon capture and electricity-based hydrogen, with significantly reduced full life-cycle greenhouse gas emissions compared to existing hydrogen production.
  • Hydrogen-derived synthetic fuels refer to a variety of gaseous and liquid fuels on the basis of hydrogen and carbon. For synthetic fuels to be considered renewable, the hydrogen part of the syngas should be renewable. Synthetic fuels include for instance synthetic kerosene in aviation, synthetic diesel for cars, and various molecules used in the production of chemicals and fertilisers. Synthetic fuels can be associated with very different levels of greenhouse gas emissions depending on the feedstock and process used. In terms of air pollution, burning synthetic fuels produces similar levels of air pollutant emissions than fossil fuels.

What kind of hydrogen will the strategy support?

Renewable hydrogen is the focus of the strategy, as it has the biggest decarbonisation potential and is therefore the most compatible option with the EU’s climate neutrality goal.

The strategy also recognises the role of other low-carbon hydrogen production processes in a transition phase, for example through the use of carbon capture and storage or other forms of low-carbon electricity, to clean existing hydrogen production, reduce emissions in the short term and scale up the market.

The differentiation between types of hydrogen will allow to tailor supportive policy frameworks in function of the carbon emissions reduction benefits of hydrogen based on benchmarks and certification.

How quickly can we roll out this promising technology?

The strategy foresees a gradual trajectory, with three phases of development of the clean hydrogen economy, at different speed across different industry sectors:

  • In In the first phase (2020-24) the objective is to decarbonise existing hydrogen production for current uses such as the chemical sector, and promote it for new applications. This phase relies on the installation of at least 6 Gigawatt of renewable hydrogen electrolysers in the EU by 2024 and aims at producing up to one million tonne of renewable hydrogen. In comparison to the current situation, approximately 1 Gigawatt of electrolysers are installed in the EU today.
  • In the second phase (2024-30) hydrogen needs to become an intrinsic part of an integrated energy system with a strategic objective to install at least 40 Gigawatt of renewable hydrogen electrolysers by 2030 and the production of up to ten million tonnes of renewable hydrogen in the EU. Hydrogen use will gradually be expanded to new sectors including steel-making, trucks, rail and some maritime transport applications. It will still mainly be produced close to the user or close the renewable energy sources, in local ecosystems.
  • In a third phase, from 2030 onwards and towards 2050, renewable hydrogen technologies should reach maturity and be deployed at large scale to reach all hard-to-decarbonise sectors where other alternatives might not be feasible or have higher costs.

How does hydrogen support the European Green Deal?

Alongside renewable electrification and a more efficient and circular use of resources – as set out in the Energy Sector Integration Strategy – large-scale deployment of clean hydrogen at a fast pace is key for the EU to achieve its high climate ambitions. It is the missing part in the puzzle to a fully decarbonised economy.

Hydrogen can support the transition towards an energy system relying on renewable energy by balancing variable renewable energy. It offers a solution to decarbonise heavily-emitting industry sectors relying on fossil fuels, where conversion to electricity is not an option. And it emits no CO2 and almost no air pollution.

How can hydrogen support the recovery, growth and jobs?

Investment in hydrogen will be a growth engine which will be critical in the context of recovery from the COVID-19 crisis. The Commission’s recovery plan highlights the need to unlock investment in key clean technologies and value chains, to foster sustainable growth and jobs. It stresses clean hydrogen as one of the essential areas to address in the context of the energy transition, and mentions a number of possible avenues to support it. 

Moreover, Europe is highly competitive in clean hydrogen technologies manufacturing and is well positioned to benefit from a global development of clean hydrogen as an energy carrier. Cumulative investments in renewable hydrogen in Europe could be up to €180-470 billion by 2050, and in the range of €3-18 billion for low-carbon fossil-based hydrogen. Combined with EU’s leadership in renewables technologies, the emergence of a hydrogen value chain serving a multitude of industrial sectors and other end uses could employ up to 1 million people, directly and indirectly. Analysts estimate that clean hydrogen could meet 24% of world energy demand by 2050, with annual sales in the range of €630 billion.

Is renewable hydrogen cost-competitive?

Today, neither renewable hydrogen nor fossil-based hydrogen with carbon capture are cost-competitive against fossil-based hydrogen. Current estimated costs for fossil-based hydrogen are around 1.5 €/kg for the EU, highly dependent on natural gas prices, and disregarding the cost of CO2. Estimated costs for fossil-based hydrogen with carbon capture and storage are around 2 €/kg, and renewable hydrogen 2.5-5.5 €/kg.

That said, costs for renewable hydrogen are going down quickly. Electrolyser costs have already been reduced by 60% in the last ten years, and are expected to halve in 2030 compared to today with economies of scale. In regions where renewable electricity is cheap, electrolysers are expected to be able to compete with fossil-based hydrogen in 2030. These elements will be key drivers of the progressive development of hydrogen across the EU economy. 

How will the strategy support investments in the hydrogen economy?

The strategy outlines a comprehensive investment agenda, including investments for electrolysers, but also for the renewable power production capacity required to produce the clean hydrogen, transport and storage, retrofitting of existing gas infrastructure, and carbon capture and storage.

To support these investments and the emergence of a whole hydrogen eco-system, the Commission launches the European Clean Hydrogen Alliance – as announced in the Commission’s New Industrial Strategy. The Alliance will play a crucial role in delivering on this Strategy and supporting investments to scale up production and demand. It will bring together the industry, national, regional and local public authorities and the civil society. Through interlinked, sector-based CEO round tables and a policy-makers’ platform, the Alliance will provide a broad forum to coordinate investment by all stakeholders and engage civil society. The key deliverable of the European Clean Hydrogen Alliance will be to identify and build up a clear pipeline of viable investment projects.

What EU financial instruments can be used for investing in hydrogen?

The Commission will also follow up on the recommendations identified in a report by the Strategic Forum for Important Projects of Common European Interest (IPCEI) to promote well-coordinated or joint investments and actions across several Member States aimed at supporting a hydrogen supply chain.

Additionally, as part of the new recovery instrument Next Generation EU, the InvestEU programme will see its capacities more than doubled. It will support the deployment of hydrogen by incentivising private investment, with a strong leverage effect.

A number of Member States have identified renewable and low-carbon hydrogen as a strategic element of their National Energy and Climate Plans. These plans will have to be taken into account when designing the national recovery and resilience plans in the context of new Recovery and Resilience Facility.

Furthermore, the European Regional Development Fund and the Cohesion Fund, which will benefit from a top-up in the context of the new initiative REACT-EU, will continue to be available to support the green transition. The possibilities offered to carbon intensive regions under the Just Transition Mechanism should also be fully explored.

Synergies between the Connecting Europe Facility for Energy and the Connecting Europe Facility for Transport will be harnessed to fund dedicated infrastructure for hydrogen, repurposing of gas networks, carbon capture projects, and hydrogen refuelling stations.

In addition, the EU ETS ETS Innovation Fund, which will pool together around €10 billion to support low-carbon technologies over the period 2020-2030, has the potential to facilitate first-of-a-kind demonstration of innovative hydrogen-based technologies. A first call for proposals under the Fund was launched on 3 July 2020.

The Commission will also provide targeted support to build the necessary capacity for preparation of financially sound and viable hydrogen projects, where this is identified as a priority in the relevant national and regional programmes, through dedicated instruments (e.g. InnovFin Energy Demonstration Projects, InvestEU) possibly in combination with advisory and technical assistance from the Cohesion Policy, from the European Investment Bank Advisory Hubs or under Horizon Europe.

Can the EU be a global leader in clean hydrogen technologies?

The international dimension is an integral part of the EU approach. Clean hydrogen offers new opportunities for re-designing Europe’s energy partnerships with both neighbouring countries and regions and its international, regional and bilateral partners, advancing supply diversification and helping design stable and secure supply chains.

The EU has supported research and innovation on hydrogen for many years, giving it a head start on the development of technologies and high profile projects, and establishing EU leadership for technologies such as electrolysers, hydrogen refuelling stations and large fuel cells. The strategy aims to consolidate EU leadership by ensuring a full supply chain that serves the European economy, but also by developing its international hydrogen agenda.

This includes in particular working closely with partners in the Eastern and Southern Neighbourhood. In this context, the EU should actively promote new opportunities for cooperation on clean hydrogen with neighbouring countries and regions, as a way to contribute to their clean energy transition and foster sustainable growth and development.

The interest in clean hydrogen is growing globally with several other countries developing dedicated research programmes and an international hydrogen market is likely to develop. The EU will globally promote sound common standards and methodologies to ensure that a global hydrogen market contributes to sustainability and achievement of climate goals.

What uses does the Commission foresee for hydrogen?

Hydrogen is a key solution to cut greenhouse gas emissions in sectors that are hard to decarbonise and where electrification is difficult or impossible. This is the case of industrial sectors such as steel production, or heavy-duty transport for example. As a carbon-free energy carrier, hydrogen would also allow for transport of renewable energy over long distances and for storage of large energy volumes.

An immediate application in industry is to reduce and replace the use of carbon-intensive hydrogen in refineries, the production of ammonia, and for new forms of methanol production, or to partially replace fossil fuels in steel making. Hydrogen holds the potential to form the basis for zero-carbon steel making processes in the EU, envisioned under the Commission’s New Industrial Strategy.

In transport, hydrogen is also a promising option where electrification is more difficult. For example in local city buses, commercial fleets or specific parts of the rail network. Heavy-duty vehicles including coaches, special purpose vehicles, and long-haul road freight could also be decarbonised by using hydrogen as a fuel. Hydrogen fuel-cell trains could be extended and hydrogen could be used as a fuel for maritime transport on inland waterways and short-sea shipping.  

In the long term, hydrogen can also become an option to decarbonise the aviation and maritime sector, through the production of liquid synthetic kerosene or other synthetic fuels.

Is hydrogen safe?

Hydrogen is a highly flammable gas and care must be taken that hydrogen is produced, stored, transported and utilised in a safe manner. Standards are already in place, and the European industry has built up significant experience with already more than 1500 km of dedicated hydrogen pipelines in place.

With hydrogen consumption expanding to other markets and end-use applications, the strategy points out that the need for safety standards from production, transport and storage to use is critical, include a system to monitor and verify.

What does the strategy foresee in terms of infrastructure development?

Appropriate infrastructure is a condition for the EU-wide development of hydrogen, but the specific infrastructure needs will depend on the patterns of development both in terms of production and use.

Hydrogen demand will largely be met by localised production in an initial phase, for example in industrial clusters or for hydrogen production for refuelling stations. However, local networks and more extensive transport options will be required for further development. Different options will have to be considered, including the repurposing of existing gas infrastructure.

Energy

Oil and the new world order: China, Iran and Eurasia

Published

on

The world oil market will undergo a fundamental change in the future. Choosing petrodollars or oil wars is no longer a question that can be answered. With the Strategic Agreement on the Comprehensive Economic and Security Partnership between China and Iran officially signed by the Foreign Ministers of both countries in Tehran on March 27, 2021, the petrodollar theorem is broken and the empire built by the US dollar is cracked.

This is because the petrodollar has not brought substantial economic development to the oil-producing countries in the Middle East during over half a century of linkage to the US dollar.

The Middle East countries generally have not their own industrial systems. The national economies are heavily dependent on oil exports and imports of cereals and industrial products. The national finances are driven by the US dollar and the financial system that follows it.

If the Middle East countries wanted to escape the control of the dollar, they should face the threat of war from the United States and its allies – things we have seen over and over again. Just think of Saddam Hussein being supported when he was fighting Iran and later being Public Enemy No. 1 when he started trading oil in euros.

The West has always wanted the Middle East to be an oil ‘sacred cow’ and has not enabled it to develop its own modern industrial system: the lack of progress in the Middle East was intended as long-term blackmail.

In the Western system of civilisation based on exchange of views and competition, the West is concerned that Iran and the entire Middle East may once again restore the former glory and hegemony of the Persian, Arab and Ottoman empires.

China is facing the exploitation of the global oil market and the threat of its supply disruption. Relying on industrial, financial, and military strength, Europe and the United States control the oil production capital, trade markets, dollar settlements, and global waterways that make up the entire petrodollar world order, differentiating China and the Middle East and dividing the world on the basis of the well-known considerations. You either choose the dollar or you choose war – and the dollar has long been suffering.

Just as in ancient times nomadic tribes blocked the Silk Road and monopolised trade between East and West, Europe and the United States are holding back and halting cooperation and development of the whole of Asia and the rest of the planet. Centuries ago, it was a prairie cavalry, bows, arrows and scimitars: today it is a navy ship and a financial system denominated in dollars.

Therefore, China and Iran, as well as the entire Middle East, are currently looking for ways to avoid middlemen and intermediaries and make the difference. If there is another strong power that can provide military security and at the same time offer sufficient funds and industrial products, the whole Middle East oil can be freed from the dominance of the dollar and can trade directly to meet demand, and even introduce new modern industrial systems.

Keeping oil away from the US dollar and wars and using oil for cooperation, mutual assistance and common development is the inner voice of the entire Middle East and developing countries: a power that together cannot be ignored in the world.

The former Soviet Union had hoped to use that power and strength to improve its system. However, it overemphasised its own geostrategic and paracolonial interests – turning itself into a social-imperialist superpower competing with the White House. Moreover, the USSR lacked a cooperative and shared mechanism to strengthen its alliances, and eventually its own cronies began to rebel as early as the 1960s.

More importantly – although the Soviet Union at the time could provide military security guarantees for allied countries – it was difficult for it to provide economic guarantees and markets, although the Soviet Union itself was a major oil exporter. The natural competitive relationship between the Soviet Union and the Middle East, as well as the Soviet Union’s weak industrial capacity, eventually led to the disintegration of the whole system, starting with the defection of Sadat’s Egypt in 1972. Hence the world reverted to the unipolarised dollar governance once the Soviet katekon collapsed nineteen years later.

With the development and rise of its economy, however, now China has also begun to enter the world scene and needs to establish its own new world order, after being treated as a trading post by Britain in the 19th century, later divided into zones of influence by the West and Japan, and then quarantined by the United States after the Second World War.

Unlike the US and Soviet world order, China’s proposal is not a paracolonial project based on its own national interests, nor is it an old-fashioned “African globalisation” plan based on multinationals, and it is certainly not an ideological export.

For years, there has been talk of Socialism with Chinese characteristics and certainly not of attempts to impose China’s Marxism on the rest of the world, as was the case with Russia. China, instead, wishes to have a new international economic order characterised by cooperation, mutual assistance and common development.

Unlike the Western civilisation based on rivalry and competition, the Eastern civilisation, which pays more attention to harmony without differences and to coordinated development, is trying to establish a new world economic order with a completely different model from those that wrote history in blood.

Reverting to the previous treaty, between the US dollar and the war, China has offered Iran and even the world a third choice. China seems increasingly willing to exist as a service provider. This seems to be more useful for China, first of all to solve its own problems and not to get involved in endless international disputes.

It can thus be more accepted by all countries around the world and unite more States to break the joint encirclement of the “democratic” and liberal imperialism of Europe and the United States.

Consequently, China and Iran – whose origins date back almost to the same period – met at a critical moment in history. According to the Strategic Agreement on Comprehensive Economic and Security Partnership between China and Iran, China will invest up to 400 billion dollars in dozens of oil fields in Iran over the next 25 years, as well as in banking, telecommunications, ports, railways, healthcare, 5G networks, GPS, etc.

China will help Iran build the entire modern industrial system. At the same time, it will receive a heavily discounted and long-term stable supply of Iranian oil. The Sino-Iranian partnership will lay the foundations for a proposed new world order, with great respect for Eastern values, not based on some failed, decadent and increasingly radicalising principles.

Faced with the value restraint and the pressure of sanctions from the United States and Europe, China is seeking to unite the European third Rome, Indo-European Iran, the second Rome and the five Central Asian countries to create a powerful geoeconomic counterpart in the hinterland of Eurasia.

Continue Reading

Energy

The stages and choices of energy production from hydrogen

Published

on

There are three main ways to use hydrogen energy:

1) internal combustion;

2) conversion to electricity using a fuel cell;

3) nuclear fusion.

The basic principle of a hydrogen internal combustion engine is the same as that of a gasoline or diesel internal combustion engine. The hydrogen internal combustion engine is a slightly modified version of the traditional gasoline internal combustion engine. Hydrogen internal combustion burns hydrogen directly without using other fuels or producing exhaust water vapour.

Hydrogen internal combustion engines do not require any expensive special environment or catalysts to fully do the job – hence there are no problems of excessive costs. Many successfully developed hydrogen internal combustion engines are hybrid, meaning they can use liquid hydrogen or gasoline as fuel.

The hydrogen internal combustion engine thus becomes a good transition product. For example, if you cannot reach your destination after refuelling, but you find a hydrogen refuelling station, you can use hydrogen as fuel. Or you can use liquid hydrogen first and then a regular refuelling station. Therefore, people will not be afraid of using hydrogen-powered vehicles when hydrogen refuelling stations are not yet widespread.

The hydrogen internal combustion engine has a small ignition energy; it is easy to achieve combustion – hence better fuel saving can be achieved under wider working conditions.

The application of hydrogen energy is mainly achieved through fuel cells. The safest and most efficient way to use it is to convert hydrogen energy into electricity through such cells.

The basic principle of hydrogen fuel cell power generation is the reverse reaction of electrolysis of water, hydrogen and oxygen supplied to the cathode and anode, respectively. The hydrogen spreading – after the electrolyte reaction – makes the emitted electrons reach the anode through the cathode by means of an external load.

The main difference between the hydrogen fuel cell and the ordinary battery is that the latter is an energy storage device that stores electrical energy and releases it when needed, while the hydrogen fuel cell is strictly a power generation device, like a power plant.

The same as an electrochemical power generation device that directly converts chemical energy into electrical energy. The use of hydrogen fuel cell to generate electricity, directly converts the combustion chemical energy into electrical energy without combustion.

The energy conversion rate can reach 60% to 80% and has a low pollution rate. The device can be large or small, and it is very flexible. Basically, hydrogen combustion batteries work differently from internal combustion engines: hydrogen combustion batteries generate electricity through chemical reactions to propel cars, while internal combustion engines use heat to drive cars.

Because the fuel cell vehicle does not entail combustion in the process, there is no mechanical loss or corrosion. The electricity generated by the hydrogen combustion battery can be used directly to drive the four wheels of the vehicle, thus leaving out the mechanical transmission device.

The countries that are developing research are aware that the hydrogen combustion engine battery will put an end to pollution. Technology research and development have already successfully produced hydrogen cell vehicles: the cutting-edge car-prucing industries include GM, Ford, Toyota, Mercedes-Benz, BMW and other major international companies.

In the case of nuclear fusion, the combination of hydrogen nuclei (deuterium and tritium) into heavier nuclei (helium) releases huge amounts of energy.

Thermonuclear reactions, or radical changes in atomic nuclei, are currently very promising new energy sources. The hydrogen nuclei involved in the nuclear reaction, such as hydrogen, deuterium, fluorine, lithium, iridium (obtained particularly from meteorites fallen on our planet), etc., obtain the necessary kinetic energy from thermal motion and cause the fusion reaction.

The thermonuclear reaction itself behind the hydrogen bomb explosion, which can produce a large amount of heat in an instant, cannot yet be used for peaceful purposes. Under specific conditions, however, the thermonuclear reaction can achieve a controlled thermonuclear reaction. This is an important aspect for experimental research. The controlled thermonuclear reaction is based on the fusion reactor. Once a fusion reactor is successful, it can provide mankind with the cleanest and most inexhaustible source of energy.

The feasibility of a larger controlled nuclear fusion reactor is tokamak. Tokamak is a toroidal-shaped device that uses a powerful magnetic field to confine plasma. Tokamak is one of several types of magnetic confinement devices developed to produce controlled thermonuclear fusion energy. As of 2021, it is the leading candidate for a fusion reactor.

The name tokamak comes from Russian (toroidal’naja kamera s magnitnymi katuškami: toroidal chamber with magnetic coils). Its magnetic configuration is the result of research conducted in 1950 by Soviet scientists Andrei Dmitrievič Sakharov (1921-1989) and Igor’ Evgen’evič Tamm (1895-1971), although the name dates back more precisely to 1957.

At the centre of tokamak there is a ring-shaped vacuum chamber with coils wound outside. When energized, a huge spiral magnetic field is generated inside the tokamak, which heats the plasma inside to a very high temperature, which achieves the purpose of nuclear fusion.

Energy, resources and environmental problems urgently need hydrogen energy to solve the environmental crisis, but the preparation of hydrogen energy is not yet mature, and most of the research on hydrogen storage materials is still in the exploratory laboratory stage. Hydrogen energy production should also focus on the “biological” production of hydrogen.

Other methods of hydrogen production are unsustainable and do not meet scientific development requirements. Within biological production, microbial production requires an organic combination of genetic engineering and chemical engineering so that existing technology can be fully used to develop hydrogen-producing organisms that meet requirements as soon as possible. Hydrogen production from biomass requires continuous improvement and a vigorous promotion of technology. It is a difficult process.

Hydrogen storage focused on the discovery of new aspects of materials or their preparation is not yet at large-scale industrial level. Considering different hydrogen storage mechanisms, and the material to be used, also needs further study.

Furthermore, each hydrogen storage material has its own advantages and disadvantages, and most storage material properties have the characteristics that relate to adductivity and properties of a single, more commonly known material.

It is therefore believed that efforts should be focused on the development of a composite hydrogen storage material, which integrates the storage advantages of multiple individual materials, along the lines of greater future efforts.

Continue Reading

Energy

The advantages of hydrogen and Israel’s warnings

Published

on

Hydrogen is the most common element in nature. It is estimated to make up 75% of the mass of the universe. Except for that contained in air, it is primarily stored in water in the form of a compound, and water is the most widely distributed substance on earth.

Hydrogen has the best thermal conductivity of all gases – i.e. ten times higher than most of them – and it is therefore an excellent heat transfer carrier in the energy industry.

Hydrogen has good combustion performance, rapid ignition, and has a wide fuel range when mixed with air. It has a high ignition point and rapid combustion rate.

Except for nuclear fuels, the calorific value of hydrogen is the highest among all fossil and chemical fuels, as well as biofuels, reaching 142.35 kJ/kg. The calorie per kilogram of hydrogen burned is about three times that of gasoline and 3.9 times that of alcohol, as well as 4.5 times that of coke.

Hydrogen has the lightest weight of all elements. It can appear as gas, liquid, or solid metal hydride, which can adapt to different storage and transport needs and to various application environments.

Burning hydrogen is cleaner than other fuels –  besides generating small amounts of water – and does not produce hydrogen azide as carbon monoxide, carbon dioxide (harmful to the environment), hydrocarbons, lead compounds and dust particles, etc. A small amount of hydrogen nitride will not pollute the environment after proper treatment, and the water produced by combustion can continue to produce hydrogen and be reused repeatedly.

Extensive use practices show that hydrogen has a record of safe use. There were 145 hydrogen-related accidents in the United States between 1967 and 1977, all of which occurred in petroleum refining, the chlor-alkali industry, or nuclear power plants, and did not really involve energy applications.

Experience in the use of hydrogen shows that common hydrogen accidents can be summarized as follows: undetected leaks; safety valve failure; emptying system failure; broken pipes, tubes or containers; property damage; poor replacement; air or oxygen and other impurities left in the system; too high hydrogen discharge rate; possible damage of pipe and tube joints or bellows; accidents or tipping possibly occurring during the hydrogen transmission process.

These accidents require two additional conditions to cause a fire: one is the source of the fire and the other is the fact that the mixture of hydrogen and air or oxygen must be within the limits of the possibility of fires or violent earthquakes in the local area.

Under these two conditions, an accident cannot be caused if proper safety measures are established. In fact, with rigorous management and careful implementation of operating procedures, most accidents do not theoretically occur.

The development of hydrogen energy is triggering a profound energy revolution and could become the main source of energy in the 21st century.

The United States, Europe, Japan, and other developed countries have formulated long-term hydrogen energy development strategies from the perspective of national sustainable development and security strategies.

Israel, however, makes warning and calls for caution.

While the use of hydrogen allows for the widespread penetration of renewable energy, particularly solar and wind energy – which, due to storage difficulties, are less available than demand – Israeli experts say that, despite its many advantages, there are also disadvantages and barriers to integrating green hydrogen into industry, including high production costs and high upfront investment in infrastructure.

According to the Samuel Neaman Institute’s Energy Forum report (April 11, 2021; authors Professors Gershon Grossman and Naama Shapira), Israel is 7-10 years behind the world in producing energy from clean hydrogen.

Prof. Gideon Friedman, actingchief scientist and Director of Research and Development at the Ministry of Energy, explains why: “Israel has a small industry that is responsible for only 10% of greenhouse gas emissions – unlike the world where they are usually 20% – and therefore the problems of emissions in industry are a little less acute in the country.”

At a forum held prior to the report’s presentation, senior officials and energy experts highlighted the problematic nature of integrating clean hydrogen into industry in Israel.

Dr. Yossi Shavit, Head of the cyber unit in industry at the Ministry of Environmental Protection, outlined the risks inherent in hydrogen production, maintenance and transportation, including the fact that it is a colourless and odourless gas that makes it difficult to detect a leak. According to Dr. Shavit, hydrogen is a hazardous substance that has even been defined as such in a new regulation on cyber issues published in 2020.

Dr. Shlomo Wald, former chief scientist at the Ministry of Infrastructure, argued that in the future hydrogen would be used mainly for transportation, along with electricity.

Prof. Lior Elbaz of Bar-Ilan University said that one of the most important things is the lack of laws: “There is no specific regulation for hydrogen in Israel, but it is considered a dangerous substance. In order for hydrogen to be used for storage and transportation, there needs to be a serious set of laws that constitute a bottleneck in our learning curve.” “Israel has something to offer in innovation in the field, but government support will still be needed in this regard – as done in all countries – and approximately a trillion dollars in the field of hydrogen is expected to be invested in the next decade.”

Although the discussion was mainly about Israel’s delay in integrating clean hydrogen into the industry, it has emerged that Sonol (Israel’s fuel supplier ranking third in the country’s gas station chain) is leading a project, together with the Ministry of Transport, to establish Israel’s first hydrogen refuelling station. “We believe there will be hydrogen transportation in Israel for trucks and buses,” said Dr. Amichai Baram, Vice President of operations at Sonol. “Hydrogen-powered vehicles for the country – albeit not really cheap in the initial phase – and regulations promoted in the field, both for gas stations and vehicles.”

Renewables account for only 6% of Israel’s energy sources and, according to the latest plans published by the Ministry of Energy and adopted by the government, the target for 2030 is 30%.

This is an ambitious goal compared to reality, and also far from the goal of the rest of the countries in the world that aim at energy reset by 2050.

The authors of the aforementioned report emphasize that fully using the clean hydrogen potential is key to achieving a higher growth target for Israel.

According to recommendations, the State should critically examine the issue in accordance with Israel’s unique conditions and formulate a strategy for the optimal integration of hydrogen into the energy economy.

Furthermore, it must support implementation, both through appropriate regulations and through the promotion of cooperation with other countries and global companies, as well as through investment in infrastructure, and in research and development, industry and in collaboration with the academic world.

There are countries in Europe or the Middle East that have already started green energy production projects, and finally it was recommended to work to develop Israeli innovations in the field, in collaboration with the Innovation Authority and the Ministry of Energy.

Continue Reading

Publications

Latest

Eastern Europe1 hour ago

Ukraine’s Chance for Rational Behaviour

From the point of view of international politics, the most important thing in the recently-published article by the President of...

South Asia3 hours ago

North-East India Towards Peace and Prosperity: Bangladesh Paves the Way

Bangladesh has always been one of the brightest examples of religious harmony and peace. “secularism” is not only a word...

Defense5 hours ago

Russia in Libya and the Mediterranean

There are several myths about Soviet/Russian involvement in Libya in particular and the Mediterranean in general. Unfortunately, such “political stories”...

African Renaissance7 hours ago

Truth and the third wave of the pandemic: To be vaccinated or not to be vaccinated

I have endured the worst possible case scenario. Being locked up in a mental institution for six months while in...

Economy11 hours ago

GCC Countries Back on Path to Economic Growth after Contraction Due to the Pandemic

Following a year of economic distress, Gulf Cooperation Council (GCC) economies are expected to return to an aggregate growth of...

Middle East17 hours ago

To the Beat of its Own Drum: On Internal Logic of Events in Tunisia

Once every five years or so, Tunisia finds itself in the headlines around the world. Last time, in 2015, it...

South Asia20 hours ago

What Does NATO Withdrawal from Afghanistan Mean for Regional Actors?

By September 11, 2021, NATO’s 20-year operation in Afghanistan will come to a close. That date marks the 20th anniversary...

Trending