Connect with us

Energy

Putin’s energy: Which oil and gas projects might push geopolitical confrontation in Eurasia?

Published

on

The West does not like the energy policy of Russia. And Putin, as its  ideologist. “Aggressive,” “annexing,” “Russian-style” – labels like these are in spades. But the market should not really bother about “political colors and shades,” as profit always comes first. In theory, this is exactly how it should be. In reality, for decades we have been watching energy wars being waged, putting politics above the economy and hampering its development. Although, speaking objectively, Russia’s energy resources remain the best offer to go for on the European energy market. That the economic competitiveness of any country, including European, depends on the cost of energy is clear to everyone. The question is, how relevant resource wars really are in a rapidly changing world, when humanity is moving up to a new technological level?

Supporters of the ideas of solidarity on both sides of the Atlantic may object: “Geopolitics is more important than the economy; Moscow is an aggressor…” A few years ago, they would have been right, to some extent: Russia’s policies have not always been akin to those of the European Union, but Donald Trump, the current and—apparently—prospective president of the United States, has also adopted the policy of protectionism, starting trade wars with both Europe and China. While the confrontation with Beijing can be defined as geopolitical, it is not clear what kind of civilizational differences could have arisen within NATO. Turkey does not count, of course.

So, the economy turns out to be more important after all. While Washington is striving to enter a new technological cycle, Europe finds itself in the thrall to the US geopolitics.

Europe itself lacks unity: Germany, France and Italy are searching for ways to mend relations with Russia, at least in the economic field (there is progress in some areas, while projects stall in others). At the same time, Poland’s leadership say that liquefied gas from the United States will cost 20–30 percent less than Russian gas shipped through pipelines. Is that even possible, especially given Poland’s geographic proximity to Russia and the availability of well-developed energy infrastructures? It is only possible, if the United States subsidizes LNG supplies. That is another example where geopolitics prevails over the economy. But isn’t it a Pyrrhic victory? It depends on the will of the Old World nations. The United States is clearly not going to subsidize LNG supplies to Germany and France. Funds must flow—but in a totally different direction.

On the other hand, Moscow has never stopped pursuing an active energy policy. However, as the successor to the Soviet Union, Russia has inherited a gas transportation system oriented almost solely to Europe, one that by the early 2000s was not in line with the country’s new ambitions in a new geopolitical environment.  

Incessant gas wars with Ukraine repeatedly proved the simple fact that the infrastructure failed to provide the sufficient diversification level. Russia therefore opted for developing an extensive network of new gas transportation routes, such as Blue Stream, Nord Stream, Power of Siberia, and other projects. All of these built on one and the same idea that there should be no transit countries that could potentially interfere with Russian gas supplies. The idea was apparently generated by Vladimir Putin, since he became its main implementer and proponent.

This was the conclusion drawn by the authoritative American agency Bloomberg in late 2019. But in line with the simplified formula, so popular with the Americans, the emphasis was placed on the idea that the Kremlin was using its energy sources to pursue its “aggressive and expansionist policy.” Yet, there is a reason to believe that American media outlets use this rhetoric only in order to create a most convenient intellectual atmosphere in Europe to favor US energy companies.

Czech journalists offer a slightly more objective picture of Russian energy projects. Like the Americans, they assume that Russia uses energy cooperation as leverage to put pressure on its partners. But the Czechs can “understand” the logics of the Kremlin’s energy geopolitics and its desire to safeguard its supplies against belligerently anti-Russian Poland and Ukraine. Prague, which is far from being the world’s Russophile capital, believes that Moscow distinguishes between NATO and the EU in its political understanding. While considering the former to be a direct threat (suffice it to mention the Alliance’s officials’ statements), Russia sees the latter as a strategic partner for diverse cooperation. 

It should be noted that for quite a long time now, the US has been hampering, with various degrees of success, the implementation of Russian energy projects on the continent. Berlin has withstood the blow from Washington in the Baltics and hasn’t given up on Nord Stream 2: even the suspension of the 93 percent complete project in late 2019 due to the US sanctions did not sway the Germans’ political determination to see it through to the logical completion. There is, however, an opposite example: at the end of 2014, the pressure exerted on Bulgaria yielded tangible results. Sofia suddenly abandoned the South Stream project, which was a heavy blow for the Russians at the time, since several billion euros had already been invested in the development of infrastructures in the south of Russia, necessary for the gas pipeline. In 2015, Turkey expressed interest in the energy project, prompting the transformation of South Stream into Turkish Stream.

Thus, Putin is pursuing a rather clear political goal—to extend his influence to the European countries; therefore, the pipeline was bound to reach the Balkans one way or another. But, apart from politics, this is about economic diversification: while Brussels on behalf of the EU declares the intention to end its dependence on Russian gas, Moscow under the radar does basically the same thing, progressively increasing the number of its partners.

Besides, the old South Stream was very much wanted in Serbia, Italy, Hungary, and some other countries. Belgrade commenced the construction of its own part of the gas pipeline as far back as 2013. From the standpoint of geopolitics, Serbia’s concerns are not unfounded: having no access to the sea, the country finds itself heavily dependent on the goodwill—and the will is not always good—of their neighbors, specifically of Bulgaria. So far, the Serbs trust that Bulgaria intends to see the so-called Bulgarian, or Balkan, Stream project through. Different media gave the project to extend Turkish Stream different names, but the idea remained the same—the Russian pipeline is eventually supposed to pass through the territory of Bulgaria, which provokes strong reaction both in the local media and in politicians’ official statements. Come to think of it, it’s such a shame because this time the terms of transit are markedly worse than those previously proposed by Moscow.

In fact, Sofia’s foreign policy relies here on the worst principles of Byzantinism, inasmuch as Russia derived all the best features from the ancient empire, while the Bulgarian leadership the skills of dodging and double-dealing. This became especially obvious in January 2020, when Sofia in a single day signed agreements simultaneously with Russians and Americans—both concerning gas supplies. At the same time, Bulgaria publicly promised the United States to halve the shipments of Russian gas by the end of the current year, substituting them with fuel from the US and Azerbaijan. A very complicated scheme.

By the way, southern European gas routes arouse increased interest of hydrocarbons suppliers from the South Caspian region: Azerbaijan and Turkmenistan, actively supported by the United States, are also working on the Trans-Anatolian Gas Pipeline. Yet, analysts estimate that gas consumption in the European market is not going to rise in the foreseeable future as the region has started its transition to green technologies. This means that the decision to develop alternative routes is nothing but a politically motivated pressure.

While the European energy market is being redivided, one has to give credit to Vladimir Putin. What he does is only natural: despite the policy of sanctions and restrictions against Russia, pursued by the West, and the US’ foul play against its market competitors, in his policy Vladimir Putin continues to aim at establishing additional gas routes from Russia to Europe. This example vividly demonstrates the extraordinary ability of the Russian leader to offer his partners the best consensus solutions and thus reap both geopolitical and economic benefits. 

Certainly, the European market is a source of many billions of euros’ revenue for Russia, yet implementing new energy projects, Moscow also has a long-term agenda in mind. As a matter of fact, it was Russia’s president who strived, for many years, to build closer ties between Russia and Europe, with his idea of shaping a common space from Lisbon to Vladivostok being central to Russia’s foreign policy before 2014.

Nevertheless it is still a part of the European civilization. We are entering a new era in which the West is no longer the world’s only pole, so what we need is the consolidation in the face of rapidly developing South-East Asian countries. As far as Russia is concerned, so long as Vladimir Putin is its leader, this “window of opportunity” remains open, although not as wide open as it was before 2014. If the opponents of cooperation with Europe prevail in the Russian authorities, the only thing left to us will be to feel how wrong the policy of discrimination against Russia has been. And all the bitterness of disappointment. Yet time will be foolishly and irreversibly lost.

Continue Reading
Comments

Energy

The Nuclear State without Nuclear: Nuclear Energy Tragedy pertaining Indian Regional Development

Avatar photo

Published

on

India’s national energy policy is heavily dependent on fossil fuel consumption to attain its energy demands; around 70 percent of the energy requirements are overwhelmingly met by coal, where the share of nuclear power is below 3 percent. Coal is essential for baseload in electrification, and the production of steel and significant industries thrive on coal consumption alone. In the year 2020-21, India produced 716 million tons of coal, nearly two times higher compared to 2011-12, when India produced 431 million tons to supply the ever-growing demand for power. Despite such enormous production, India is one of the largest coal importers. Not alone, the coal simultaneously India dependence on oil imports, according to reports, stood at 76 percent, which is predicted to surge up to severe levels by 2040.    

Despite the heavy reliance on fossil fuels and the fact that India maintained its carbon emissions level below (” emissions per capita, total or kWh produced”) the Paris agreement 2015 levels, meticulous analysis reveals that the carbon emission level of India has risen by 200 percent since 1990. Climate change affects the agrarian sector, which makes up about 42 percent of India’s workforce, pushing it under the blade of job cuts if the water scarcity gets severe; it also threatens the inhabitants of hilly areas whose employment is dependent on the mesmeric mountains tourism. The scope of development of any region in this modern world significantly relies on the consumption of power to run factories, lighten up houses, and fast irrigation systems in farms for large quantities of production.   

India’s current electricity distribution has 371.054 GW GRIDs, divided into five regions Northern, Eastern, Western, North Eastern, and Southern; seventeen percent of this electric GRID is exercised by the agriculture sector, where the commercial agencies use 48 percent. With the emerging depletion of fossil fuels, nuclear power adoption, along with other clean energy power sources, is considered one of the priorities of the Indian government.

However, reports depicted that those policies’ effects are not present on the ground, where nuclear energy contributes merely three percent to the total energy production. The nuclear proportion in China’s energy production is four times greater than India’s; India must adapt to the nuclearization of India’s rural area, paving the way for future growth. The recent enclosure of twenty-five-year-old coal plants in India reflects a minor contribution concerning carbon emissions reduction. At the same time, the consequence brought India into the coal crisis in the northern region.

Rural backwardness constitutes the majority due to the low electricity consumption, whose reasons are ample, sometimes due to geographical limitations and atmospheric restrictions, especially in hilly areas. The electric GRID distribution and maintenance could be better, where the electricity surplus is concentrated in a few sectors based in metro cities. During the Covid Preventive lockdown, seventy percent of power consumption drop in rural India has been noticed; this development questions India’s energy policies which heavily relied upon fossil fuels for energy production. Four states, named Chhattisgarh, Jharkhand, Orissa, and Madhya Pradesh, comprise 550 million tons of coal, equivalent to 75-80 percent of coal consumption. The argument in favor of coal is due to its cost-effectiveness and availability.  

Another reason for low rural development is the GRID-electrification system, being the primary source of power supply in the rural household, reported monthly energy consumption of 39 kWh, half of India’s national energy consumption average, which is a significant obstacle to the adoption of modern technology for overall growth in rural areas. The reason is not alone political but mismanagement of electricity distribution. As the question of this paper addressed, Why Nuclear? Why not other sources of non-Fossil fuels energy?   

Mathematical Evidence  

For example, the number of atoms of Uranium 235 per kilogram is 2.564×1024 releasing the energy per gram is around 2.29×104 kWh. [Dr S.N Ghosal, Nuclear Physics].  Thermal plants produce the same energy after running for 229 hours at the capacity of 1 MW. When one kilogram of coal burns, it generates 8.926 kWh after exhausting the total mass of 2.56×103 kg. The above estimates demonstrate the advantage of using uranium for power generation. 

However, the nuclear economic constraint unrevealed the enormous cost comes alongside Nuclear Power Plant projects, especially the cost of 1000 megawatts generation is around 5500 dollars, whereas natural gas provides the same quantity of energy for under 1000 dollars; the construction durations refrain policymakers to entertain the nuclear reactor as a feasible power generation source where it takes around seven years to complete and 15-16 years to breakeven.

Nuclear dependency globally was now 10 percent, peaked at 17.7 in 1996, and this is the second obstacle for nuclear energy globally. However, India’s view, contrary to the other nations, being the largest reserve of Thorium, gives an upper hand to maximize energy production by establishing thorium reactors which are undergoing the three-stage plan. Besides thorium reactors, SMRs are in consideration, especially the recent development in the USA where private firm Nu Scale advanced to develop the Small Modular Nuclear Reactor with the capacity of generating 50 Megawatts, which is not par to the level of traditional reactors but corresponds to the resilience it could provide electrifying those lands where electric GRIDs yet not connected. The rural area primarily benefits from such development as such modules are self-sustainable, where the reliance will be on water recycling, limiting water misuse.

The case of Jadugoda was an infamous case where Uranium plant radiation contributed to severe health deterioration, highlighted by Kyoto university research. Radiation is one of the critical issues alongside nuclear waste, which hinders nuclear energy’s ability to obtain massive consent, especially in rural areas.

Other Renewable sources talking about Hydropower, India has 18 pressurized heavy water reactors in operation, with another four projects launched totaling 2.8 GW capacity. India 2019 took over Japan, becoming the fifth-largest hydropower producer generating 162.10 TWh from 50 TWH installed capacity. Close to 100 hydropower currents are used, contributing around twelve percent to the total power generation. The procedure of hydropower generation emphasizes water flow tremendously; without the fast running, the water plant will be defunct and fail to produce power. This forces the policymakers to ignore the natural effects on the regions of the water flow is adequate. 

Climate change models are clear about the cascading impacts of global warming trends on the glaciers of the Himalayas, the primary source of water in the region that sustains the drainage network within the mountain chain. The current hydro onslaught in the Himalayas deliberately ignores contentious externalities such as social displacement, ecological impacts, and environmental and technological risks. In the rural areas, if the regions do not have such a large flow of water, it will discourage the policy marker from implementing it even if one state possesses water, it will obstruct the construction of such projects because of shortage of water and possibly drainage hindering to fulfill the critical water needs, especially in the Punjab region.

 Wind energy mechanical power through wind turbines as of 28 February 2021, India installed wind power capacity was 38.789 GW, the world’s fourth largest installed wind power capacity. Like hydropower, nature requires to perform its task where the wind flow determines the total power production. If a region is not naturally gifted, then feasibility is under question.

The last alternative Fossil fuel, which is heavily praised by the young generation, is solar energy. The country currently has 44.3 GW installed capacity as of 31 August 2021, where solar energy has the potential to generate electricity for rural areas and simultaneously reduce Fossil fuels consumption. The New and Renewable Energy (MNRE) expected “the total investment for upgrading to 100 GW solar power capacity cost around $94 billion. The cost-efficiency factor is a plus point of solar energy. However, the pace still needs to catch up in the quest to replace conventional sources of energy.   

The fossil fuels burned by the factories in the urban areas are the primary power contributor supplying power to the rural areas. This system heavily depends on the GRIDs vulnerable to atmospheric shifts such as storms.  

Moreover, even a minor breakdown might defuse the electricity power supply GRIDs for days, if not weeks. To tackle these issues, Portable Nuclear plants could be set up to give the villagers access to electricity without interruption. The reduction of size assists the government official in planning the safety strategy more swiftly simultaneously; cost efficiency is another factor where a policymaker can cut factory expenses.

Figure 1 GRID-level system costs for dispatch able and renewable technologies Materials requirement for various electricity generation technologies (source: US Department of Energy)

Figure 1 deciphers the cost relationship enabling us to comprehend the long-term financial cost when the connection cost among other eco-friendly energy sources is too high compared to fossil fuels. Nuclear energy outperforms all existing energy sources considered eco-friendly in connection cost and balancing cost. This development also illustrates that the factories lean more towards fossil fuels because of the low cost. However, economically speaking, the employment of such industries could be more sustainable in the long term.

The Photovoltaic, Hydro, and onshore alternatives, well-established sources of energy production, are not that reliable, and variation in power generation discourages them from being considered a superior replacement. 

Solar is affordable but unreliable because intermittency issues require storing backup, and the production depends mainly upon the sun, like the wind, for turbine energy. In contrast, coal requires man labor to extract from the mines and ignite it to produce energy if we consider the process in abstraction. The case of nuclear is different nuclear energy do rely on 239 Uranium and 242 Plutonium, in some cases 232 Thorium to attain the level where power could be generated, and uranium, to be precise, is scared in quantity to solve the enormous issue Enrico Fermi already in the 1940s, stated that nuclear reactors operating with ‘fast’ neutron are capable to fission not only the rare isotope U-235 which indicates towards A fast-neutron reactor.

The Covid and Rural development     

During the lockdown, seventy percent of the power consumption drop in rural India has been noticed; this development questions India’s energy policies which heavily relied upon fossil fuels for energy production. The GRID-electrification, the primary source of power supply in the rural household, reported monthly energy consumption of 39 kWh half of India’s national energy consumption average, which is a significant obstacle to the adoption of modern technology for overall growth in rural areas. A significant downfall has been noticed in the employment sector, tabled whether it could replace fossil fuel, which constitutes a significant number in employing rural workers. 

Deloitte’s study of the European nuclear industry suggested that nuclear provides more jobs per TWh of electricity generated than any other clean energy source. According to the report, the nuclear industry sustains more than 1.1 million jobs in the European Union. Aggressive promotion of nuclear energy will impact all other fields, such as education, the health sector, and employment. Running a conventional reactor requires a team who can resolve the complex task; however, if the reactor is small and portable, the operation fixations reduce significantly. 

Providing adequate function training will become the source of employment while reducing fissile fuel dependency. At the same time, nuclear reactors require sophisticated hands to run the function, which could reduce the unemployment created by fossil fuel industries in response to a carbon tax or depletion of fuels, more precisely, a severe rise in fuel prices.    

The Limits    

Although the enormous potential for nuclear energy possesses few areas that are still vulnerable whose exploitation might invite catastrophic such as the illegal transfer of nuclear energy by non-state actors, one of the critical issues India is facing is news of uranium confiscations currently haunts the world that India security vulnerability enabled the private persons to have a hand over fissile materials, the other issue that should be considered is the maintenance of nuclear plants Chornobyl is an excellent example of what extend of potential a nuclear disaster possesses still in several regions in Ukraine radiation exist. [Barry W. Brook, “Why nuclear energy is sustainable and has to be part of the energy mix”].

India needs to accelerate the nuclear problem while strictly abiding by the security norms of the nuclear policy widely accepted as a nuclear safety benchmark. Meltdown, Hazardous nuclear waste and maintenance predominated the circle of nuclear crisis (except France and Sweden, as a significant proportion of electricity generation depends on nuclear plants); currently, SMR is echoing to minimize such externalities; however, the effectiveness of such small module reactors must be scrutinized under tests before it could be considered as a genuine alternative to traditional reactors.

Conclusion   

Nuclear energy is far superior to other fossil fuel energy alternatives. However, the low adaption is one of the critical issues that require tackling by incentivizing the research to develop several small scales portable nuclear reactor modules that stand on the international security parameters and simultaneously ensure a low probability of accidents. The employment prospect from nuclear reactors is enormous, and as the depletion of fossil fuel takes place could become the most employment service-providing sector.

 Two types of reactors are mainly highlighted first is a conventional nuclear reactor, and the second is portable nuclear reactors; government, in the long term, must concentrate on building small-scale reactors so cost efficiency will favor the rural people. Nuclear energy is a multi-sectoral project where the industries and the household will have greater access to electricity, but the complexity of reactor management advances specialization in education. Such problems are vital if India has any dream of total nuclearization.

Continue Reading

Energy

Azerbaijan seeks to become the green energy supplier of the EU

Avatar photo

Published

on

image source: azernews

Recently, Georgia, Azerbaijan, Hungary and Romania signed an agreement to build a strategic partnership regarding green energy.   According to the document of the text, these four countries will be working together to develop a 1,195 kilometer submarine power cable underneath the Black Sea, thus effectively creating an energy transmission corridor from Azerbaijan via Georgia to Romania and Hungary.   For Europe, this is a golden opportunity that must be seized upon.

According to the International Monetary Fund, “Europe’s energy systems face an unprecedented crisis. Supplies of Russian gas—critical for heating, industrial processes and power—have been cut by more than 80 percent this year.  Wholesale prices of electricity and gas have surged as much as 15-fold since early 2021, with severe effects for households and businesses.  The problem could well worsen.” 

For this reason, Europe should switch as soon as possible to green energy supplies, so that they will rely less upon Russian gas and oil in the wake of the Ukraine crisis.   This will enable Europe to be energy independent and to fulfill its energy needs by relying upon better strategic partners, such as Azerbaijan, who are not hostile to Europe’s national security and the West more generally.  

By having this submarine power cable underneath the Black Sea, Azerbaijan can supply not only Hungary and Romania with green energy, but the rest of Europe as well if the project is expanded.   Israel, as a world leader in renewable energy, can also play a role in helping Azerbaijan become the green energy supplier of the EU, as the whole project requires Azerbaijan to obtain increased energy transmission infrastructure.  Israel can help Azerbaijan obtain this energy transmission infrastructure, so that Azerbaijan can become Europe’s green energy supplier.    

According to the Arava Institute of the Environment, “Israel, with its abundant renewable energy potential, in particular wind and solar, has excellent preconditions to embark on the pathway towards a 100% renewable energy system. Accordingly, Israel has already made considerable progress with regard to the development of renewable energy capacities.”   The Israeli government has been pushing hard for a clean Israeli energy sector by 2030.   Thus, Israel has the technical know-how needed to help Azerbaijan obtain the infrastructure that it needs to become the green energy supplier of Europe following the crisis in the Ukraine.

Given the environmental conditions present in Azerbaijan, which has an abundance of access to both solar and wind power, with Israeli technical assistance, Azerbaijan can help green energy be transported through pipelines and tankers throughout all of Europe, thus helping to end the energy crisis in the continent.   In recent years, Europe has sought to shift away from oil and gas towards more sustainable energy.     

With this recent agreement alongside other European policies, these efforts are starting to bear fruits.   In 2021, more than 22% of the gross final energy consumed in Europe came from renewable energy.   However, different parts of Europe have varying levels of success.   For example, Sweden meets 60% of its energy needs via renewable energy, but Hungary only manages to utilize renewable energy between 10% and 15% of the time.    Nevertheless, it is hoped that with this new submarine power cable underneath the Black Sea, these statistics will start to improve across the European Union and this will enable Europe to obtain true energy independence, free of Russian hegemony.  

Continue Reading

Energy

Energy Technology Perspectives 2023: Opportunities and emerging risks

Avatar photo

Published

on

The energy world is at the dawn of a new industrial age – the age of clean energy technology manufacturing – that is creating major new markets and millions of jobs but also raising new risks, prompting countries across the globe to devise industrial strategies to secure their place in the new global energy economy, according to a major new IEA report.

Energy Technology Perspectives 2023, the latest instalment in one of the IEA’s flagship series, serves as the world’s first global guidebook for the clean technology industries of the future. It provides a comprehensive analysis of global manufacturing of clean energy technologies today – such as solar panels, wind turbines, EV batteries, electrolysers for hydrogen and heat pumps – and their supply chains around the world, as well as mapping out how they are likely to evolve as the clean energy transition advances in the years ahead.

The analysis shows the global market for key mass-manufactured clean energy technologies will be worth around USD 650 billion a year by 2030 – more than three times today’s level – if countries worldwide fully implement their announced energy and climate pledges. The related clean energy manufacturing jobs would more than double from 6 million today to nearly 14 million by 2030 – and further rapid industrial and employment growth is expected in the following decades as transitions progress.

At the same time, the current supply chains of clean energy technologies present risks in the form of high geographic concentrations of resource mining and processing as well as technology manufacturing. For technologies like solar panels, wind, EV batteries, electrolysers and heat pumps, the three largest producer countries account for at least 70% of manufacturing capacity for each technology – with China dominant in all of them. Meanwhile, a great deal of the mining for critical minerals is concentrated in a small number of countries. For example, the Democratic Republic of Congo produces over 70% of the world’s cobalt, and just three countries – Australia, Chile and China – account for more than 90% of global lithium production.

The world is already seeing the risks of tight supply chains, which have pushed up clean energy technology prices in recent years, making countries’ clean energy transitions more difficult and costly. Increasing prices for cobalt, lithium and nickel led to the first ever rise in EV battery prices, which jumped by nearly 10% globally in 2022. The cost of wind turbines outside China has also been rising after years of declines, and similar trends can be seen in solar PV.

“The IEA highlighted almost two years ago that a new global energy economy was emerging rapidly. Today, it has become a central pillar of economic strategy and every country needs to identify how it can benefit from the opportunities and navigate the challenges. We’re talking about new clean energy technology markets worth hundreds of billions of dollars as well as millions of new jobs,” said IEA Executive Director Fatih Birol. “The encouraging news is the global project pipeline for clean energy technology manufacturing is large and growing. If everything announced as of today gets built, the investment flowing into manufacturing clean energy technologies would provide two-thirds of what is needed in a pathway to net zero emissions. The current momentum is moving us closer to meeting our international energy and climate goals – and there is almost certainly more to come.”

“At the same time, the world would benefit from more diversified clean technology supply chains,” Dr Birol added. “As we have seen with Europe’s reliance on Russian gas, when you depend too much on one company, one country or one trade route – you risk paying a heavy price if there is disruption. So, I’m pleased to see many economies around the world competing today to be leaders in the new energy economy and drive an expansion of clean technology manufacturing in the race to net zero. It’s important, though, that this competition is fair – and that there is a healthy degree of international collaboration, since no country is an energy island and energy transitions will be more costly and slow if countries do not work together.”

The report notes that major economies are acting to combine their climate, energy security and industrial policies into broader strategies for their economies. The Inflation Reduction Act in the United States is a clear example of this, but there is also the Fit for 55 package and REPowerEU plan in the European Union, Japan’s Green Transformation programme, and the Production Linked Incentive scheme in India that encourages manufacturing of solar PV and batteries – and China is working to meet and even exceed the goals of its latest Five-Year Plan.

Meanwhile, clean energy project developers and investors are watching closely for the policies that can give them a competitive edge. Relatively short lead times of around 1-3 years on average to bring manufacturing facilities online mean that the project pipeline can expand rapidly in an environment that is conducive to investment. Only 25% of the announced manufacturing projects globally for solar PV are under construction or beginning construction imminently, according to the report. The number is around 35% for EV batteries and less than 10% for electrolysers. Government policies and market developments can have a significant effect on where the rest of these projects end up.

Amid the regional ambitions for scaling up manufacturing, ETP-2023 underscores the important role of international trade in clean energy technology supply chains. It shows that nearly 60% of solar PV modules produced worldwide are traded across borders. Trade is also important for EV batteries and wind turbine components, despite their bulkiness, with China the main net exporter today.

The report also highlights the specific challenges related to the critical minerals needed for many clean energy technologies, noting the long lead times for developing new mines and the need for strong environmental, social and governance standards. Given the uneven geographic distribution of critical mineral resources, international collaboration and strategic partnerships will be crucial for ensuring security of supply.

Continue Reading

Publications

Latest

Science & Technology2 hours ago

New discoveries and scientific advances from around the world

In July 2022 the National Aeronautics and Space Administration (NASA) announced the first batch of colour photos taken by the...

Urban Development4 hours ago

A City-Led Climate Resilience

Climate change is becoming a major cause of an increasing rate of weather catastrophes. The heat-trapping greenhouse gas is making...

Economy8 hours ago

Guangdong special economic zones at China

Guangdong Province in southern China is distinguished by the economic development. The sign been approached by “Made In Guangdong” is...

International Law10 hours ago

Shaping a 21st-century world order amounts to a patchwork

What do Moroccan arms sales to Ukraine, a transnational Russian Iranian transit corridor, and US assistance in developing a Saudi...

Terrorism Terrorism
World News12 hours ago

Russian Ministry of Defence: We acquired over 20,000 documents of the U.S. biological programmes

Briefing by Lieutenant General Igor Kirillov, chief of Nuclear, biological and chemical (NBC) protection troops of the Ministry of defence...

World News14 hours ago

Biden’s big foreign policy idea is in danger

President Biden won Senate support last year for a big expansion of America’s military commitments in Europe that was also...

Health & Wellness15 hours ago

High blood pressure? A heart app prescribes musical therapy

By ANTHONY KING The opening of a Beethoven symphony thrills the heart – but not just figuratively. While music touches us...

Trending