Connect with us

Energy News

Sustainable bioenergy use: A clear path to biodiversity regeneration

Published

on

While renewable energy is advancing rapidly in Africa due to consistent efforts and investment, wood fuel is still largely used on the continent. In addition to being of significant value to African economies, it is the single most important energy source for most households. However, high dependence on biomass, even with the development of improved cookstoves, contributes to deforestation, degradation of soil quality and reduced biodiversity. Wood fuel use in households is also an important source of indoor air pollution, which, according to the World Health Organization, kills 4 million people every year.

Urgent action is therefore required to address fuelwood use and management on the continent, where only 25 per cent of the population has access to clean fuels and energy for cooking. A recent desk study published jointly by the UN Environment Programme (UNEP) and the African Union, Review of Woodfuel Biomass Production and Utilization in Africa, takes stock of the current situation and proposes policies and strategies for Member States to accelerate the transition to renewable energy sources.

UNEP and its partners promote the development of renewable sources of energy and energy efficiency as part of the Sustainable Energy for All initiative and climate mitigation effort. With the financial support from the International Climate Initiative, UNEP just concluded the Building capacity for enhancing bioenergy sustainability through the use of Global Bioenergy Partnership indicators project in Ethiopia and Kenya.

The project provides technical assistance to government officials and experts in Ethiopia and Kenya to assess the sustainability of their bioenergy sectors and to build their capacity for long-term, periodic monitoring. The project is structured around the application and interpretation of 24 indicators to assess the environmental, social and economic impacts of bioenergy production and use. Results from the indicators will be used to inform the decision-making process.

Energy consumption in Ethiopia was an estimated 42 million tonnes of oil equivalent in 2016. Biomass energy sources account for 91 per cent of final energy consumption and for 98 per cent of energy consumption in the residential sector. The Global Bioenergy Partnership project in Ethiopia examined the development of biogas and solid biomass (firewood and charcoal) production to understand how it can contribute to reaching the Sustainable Development Goals as well as to national development policies, such as the Climate Resilience Green Economy Strategy.

With 99 million people relying on the traditional use of biomass for cooking in Ethiopia, access to modern energy, reduction of poverty and better health are potential benefits that biogas and improved biomass cooking solutions can bring. This is compared with the traditional use of biomass in open fires. Other benefits accruing from this intervention include increased employment, greater gender equity and climate change mitigation.

“These findings help improve our overall knowledge and understanding about Ethiopia’s bioenergy sector and serve as a starting point to improve the sustainability of this sector and support the design of effective sustainable bioenergy policies as part of low-carbon development strategies,” said Fikadu Beyene, Commissioner of Environment, Forest and Climate Change in Ethiopia.

The energy mix of Kenya is dominated by biomass then oil and oil products, geothermal and other renewables, according to its National Bureau of Statistics. Biomass contributes a large share of the country’s final energy consumption, supplying more than 90 per cent of rural household energy needs. 43 million people rely on the traditional use of biomass for cooking in the country.

The project helped to assess the current and future potential of the country’s bioenergy sector focusing on two courses of action: the use of sugarcane bagasse briquettes residues by the tea industry and charcoal production from forests, woodlands and farmlands for use by households. The tea industry consumes almost 1 million tonnes of firewood per year, or more than 4 per cent of the volume of firewood consumed each year in Kenya. The summary report prepared for the project therefore outlines the consequences of the widening gap between supply and demand for wood fuel with current wood fuel supply outstripping demand in various parts of the country.

“The project outcomes give a better understanding of the environment, social and economic impacts of bioenergy use, and helps to sustainably manage this important national resource in Kenya,” said Charles Mutai, Director, Climate Change Directorate in the Ministry of Environment and Forestry.

In Kenya, the project was implemented by Stockholm Environment Institute in collaboration with the Ministry of Environment and Forestry and UNEP. The Stockholm Environment Institute conducted the calculation and analysis of the 24 indicators applied to the two priority pathways together with the Kenya Forestry Research Institute, Strathmore University and the World Agroforestry Centre.

In Ethiopia, the project was undertaken by the Environment, Forest and Climate Change Commission and the Ethiopian Environment and Forest Research Institute, which conducted the technical calculation and analysis of the 24 indicators applied to the two priority pathways.

These indicators were developed in a collaborative process, led by the Food and Agriculture Organization of the United Nations, which currently hosts the Global Bioenergy Partnership Secretariat. The partnership works with various stakeholders such as governments, intergovernmental organizations and civil society.

UN Environment

Continue Reading
Comments

Energy News

Dream of unlimited, clean nuclear fusion energy within reach

Published

on

by Gareth Willmer

The old joke is that nuclear fusion is always 30 years away. Yet the dream of abundant clean energy is no laughing matter as we meet an ITER researcher to catch up on progress at the reactor facility.

The Sun has fuelled life on Earth for billions of years, creating light and heat through nuclear fusion. Given that incredible power and longevity, it seems there can hardly be a better way to generate energy than by harnessing the same nuclear processes that occur in our own and other stars.

Nuclear fusion reactors aim to replicate this process by fusing hydrogen atoms to create helium, releasing energy in the form of heat. Sustaining this at scale has the potential to produce a safe, clean, almost inexhaustible power source.

The quest began decades ago, but could a long-running joke that nuclear fusion is always 30 years away soon start to look old?

Some hope so, following a major breakthrough during a nuclear-fusion experiment in late 2021. This came at the Joint European Torus (JET) research facility in Oxfordshire, UK, in a giant, doughnut-shaped machine called a tokamak.

Inside, superheated gases called plasmas are generated in which the fusion reactions take place, containing charged particles that are held in place by powerful magnetic fields. Such plasmas can reach temperatures of 150 million degrees Celsius, an unfathomable 10 times hotter than the Sun’s core. 

In a sustained five-second burst, researchers in the EUROfusion consortium released a record-breaking 59 megajoules (MJ) of fusion energy. This was almost triple the previous 21.7 MJ record set at the same facility in 1997, with the results touted as ‘the clearest demonstration in a quarter of a century of the potential for fusion energy to deliver safe and sustainable low-carbon energy’. Follow the link to learn more about the successful nuclear fusion experiment at JET.

The results provided a major boost ahead of the next phase of nuclear fusion’s development. A larger and more advanced version of JET known as ITER (meaning “The Way” in Latin) is under construction on a 180-hectare site in Saint-Paul-lès-Durance, southern France.

ITER, which is being built as a collaboration between 35 nations, including those in the EU, is aimed at further firming up the concept of fusion. One of the most complicated machines ever to be created, it was scheduled to start generating its first plasma in 2025 before entering into high-power operation around 2035 – although researchers on the project expect some delays because of the pandemic.

Major milestone

The results at JET represent a major landmark, said Professor Tony Donné, programme manager of the EUROfusion project, a major consortium of 4 800 experts, students and facilities across Europe. ‘It’s a huge milestone – the biggest for a long time,’ he said.

‘It’s confirmed all the modelling, so it has really increased confidence that ITER will work and do what it’s meant to do.’ While the energy generated at JET lasted just a few seconds, the aim is to ramp this up to a sustained reaction that produces energy.

The results were the culmination of years of preparation, with Prof Donné explaining that one of the key developments since 1997 involved changing the inner wall of the JET vessel.

Previously, the wall was made of carbon, but this proved too reactive with the fuel mix of deuterium and tritium, two heavier isotopes  – or variants – of hydrogen used in the fusion reaction. This resulted in the formation of hydrocarbons, locking up the tritium fuel in the wall.

In the rebuild, which involved 16 000 components and 4 000 tonnes of metal, the carbon was replaced with beryllium and tungsten to reduce tritium retention. Ultimately, the team was able to cut the amount of trapped fuel by a large multiple, contributing to the success of the recent fusion shot. 

DEMO run

In preparation for the next stage of fusion’s epic journey, upgrades to JET ensured that its configuration aligns with the plans for ITER. Further in the future, the next step beyond ITER will be a demonstration power plant known as DEMO, designed to send electricity into the grid – leading on to fusion plants becoming a commercial and industrial reality.

‘ITER is a device which will create 10 times more fusion energy than the energy used to heat the plasma,’ said Prof Donné. ‘But as it is an experimental facility, it will not deliver electricity to the grid. For that, we need another device, which we call DEMO. This will really bring us to the foundations for the first generation of fusion power plants.’ 

Prof Donné added: ‘JET has shown now that fusion is plausible. ITER has to show that it’s further feasible, and DEMO will need to demonstrate that it really works.’

Planned to provide up to 500 megawatts (MW) to the grid, he thinks it is realistic for DEMO to come into operation around 2050. ‘We hope to build DEMO much faster than we built ITER, making (use of the) lessons learned,’ he said.

Yet there are other key challenges to overcome on the way to getting nuclear fusion up and running. Not least is that while deuterium is abundant in seawater, tritium is extremely scarce and difficult to produce.

The researchers therefore plan to develop a way of generating it inside the tokamak, using a ‘breeding blanket’ containing lithium. The idea is that high-energy neutrons from the fusion reactions will interact with the lithium to create tritium.

Essential energy

Prof Donné said nuclear fusion could prove a pivotal green and sustainable energy source for the future. ‘I would say it’s essential,’ he said. ‘I’m not convinced that by 2050 we can make the carbon dioxide transition with only renewables, and we need other things.’

And although he says the current method of creating nuclear energy through fission is becoming safer and safer, fusion has key advantages. Proponents for ITER talk of benefits such as an absence of meltdown risk, adding that nuclear fusion does not produce long-lived radioactive waste and that reactor materials can be recycled or reused within 100 to 300 years.

‘It’s definitely much safer,’ said Prof Donné. Referencing the stigma carried by nuclear energy, he said, ‘What we see when we interact with the public is that people very often haven’t heard about nuclear fusion. But when we explain the pros and cons, then I think people get positive.’

Referring to Lev Artsimovich, dubbed the “father of the tokamak”, he said, ‘Artsimovich always said fusion will be there when society really needs it. If we get fusion up and running, then really we have a very safe and clean energy source which can give us energy for thousands of years.’

The research in this article was funded by the EU. This article was originally published in Horizon, the EU Research and Innovation Magazine.  

Continue Reading

Energy News

Salt and a battery – smashing the limits of power storage

Published

on

by Caleb Davies

Thanks to the renewables’ boom, the limiting factor of the energy revolution is not power supply as much as power storage these days. Cleaner, greener batteries are needed to charge our cars, ebikes and devices for longer.

We have all been there. The rectangular icon in the top right-hand corner of the screen turns red and flashes to indicate you’re almost out of battery. But the problems with batteries go far beyond this kind of minor inconvenience. Batteries are a crucial part of our green energy future but also an imperfect one.

In future, a large portion of our energy will come from renewable sources such as solar and wind. But there are times when the wind does not blow and the sun does not shine. To even out supply, we need to store the surplus electricity generated by renewables, until we are ready to consume it. One important means of doing so is with better batteries. We also need huge numbers of batteries if we are to power the envisioned fleets of electric cars and mobility devices.

The trouble is, even the best batteries have problems. One big sticking point is that lithium-ion cells use lithium as a key component. This is mined as salt. Europe does not presently have any large reserves, so relies on imports from only a small number of places, such as Australia and Chile. Lithium batteries are also expensive, have a limited storage capacity, and lose performance after repeated charging.

If we are to make them better, first we need to understand how they work. Traditional lithium-ion batteries have three key components. There are two solid components called electrodes – the anode and the cathode – and a liquid called the electrolyte. When the battery discharges, electrons stream out of the anode to the cathode to power whatever device it’s connected to. Positive lithium ions diffuse through the electrolyte, attracted to the negative charge of the cathode. When the battery is being charged up, this goes in reverse.

Energy density

The whole process is a reversible electrochemical reaction. There are many flavours of this basic process with different kinds of chemicals and ions involved. A particular option being explored by the ASTRABAT project is to do away with the liquid electrolyte and make it a solid or gel instead. In theory, these solid-state batteries have a higher energy density, meaning they can power devices for longer. They should also be safer and quicker to manufacture, since, unlike typical lithium-ion batteries, they don’t use a flammable liquid electrolyte.

We need to continue to invest in research to validate the next generation of batteries.

Dr Sophie Mailley, ASTRABAT

Electrochemist Dr Sophie Mailley at the Atomic Energy and Alternative Energies Commission (CEA) in Grenoble, France, is the ASTRABAT project coordinator. She explains that lithium-based solid-state batteries do already exist. But such batteries use a gel as the electrolyte and only work well at temperatures of about 60 C, meaning they are unsuitable for many applications. ‘It’s clear that we need to innovate in this area to be able to face the problems of climate change,’ said Dr Mailley.

She and her team of partners have been working on perfecting a recipe for a better solid-state lithium battery. The job involves looking at all sorts of candidate components for the battery and working out which ones work best together. Dr Mailley says they have now identified suitable components and are working out ways to scale up manufacturing of the batteries. 

One question she and her team plan to investigate next is, whether it will be easier to recycle lithium and other elements from solid-state batteries compared to typical lithium-ion batteries. If it is, that could increase the recycling of lithium and to reduce dependence on imports.

Dr Mailley estimates that if the research goes well, solid-state lithium batteries like the one ASTRABAT is working on could be entering commercial use in electric cars by about 2030. ‘I don’t know if it is these solid-state batteries that will be the next important battery innovation,’ said Dr Mailley. ‘There are a lot of other possible solutions, like using manganese or sodium (instead of lithium). Those might work out. But we need to continue to invest in research to validate the next generation of batteries,’ she said.

Positively charged

When it comes to storing energy for the purposes of smoothing out supply to electricity grids, batteries need be reliable and high capacity, which means expensive. Scarce lithium isn’t the best choice. Instead, the HIGREEW project is investigating another different kind of battery, known as a redox flow cell.

The main components of redox flow batteries are two liquids, one positively charged, one negatively charged. When the battery is in use, these are pumped into a chamber known as a cell stack, where they are separated by a permeable membrane and exchange electrons – creating a current.

The project’s co-ordinator is chemist Dr Eduardo Sanchez at CIC energiGUNE, a research centre near Bilbao in Spain. He explains that plenty of large-scale redox flow batteries are already in operation around the world and they are designed to be stable, lasting about 20 years. But these existing batteries use vanadium dissolved in sulfuric acid, which is a toxic and corrosive process. Safety requirements mean these batteries must be manufactured at great expense.

I would say we have a bloom here in Europe, with a lot of companies working on flow batteries.

Dr Eduardo Sanchez, HIGREEW

‘Vanadium has lots of strengths – it’s cheap and stable,’ said Dr Sanchez. ‘But if you have a leak from one of these batteries, that’s not nice. You must design the tanks to be extremely durable.’

Less toxic

The HIGREEW project is planning to create a redox flow battery that uses far less toxic materials such as salt solutions in water which stores carbon-based ions.  Sanchez and his team of colleagues have been working on developing the best recipe for this battery, screening many different combinations of salts and chemical solutions. They have now come up with a shortlist of a few prototypes that perform well and are working on scaling these up.

Work on one huge prototype battery is ongoing at the CIC energiGUNE centre. ‘We have to ensure that they maintain their good performance at scale,’ said Dr Sanchez.

His team have also been investigating a method of dipping commercially available battery membrane materials so as to chemically alter them, making them last longer.

Dr Sanchez sees a bright future for redox flow batteries. ‘I would say we have a bloom here in Europe, with a lot of companies working on flow batteries.’ He predicts that manufacturing redox flow batteries could bring abundant employment opportunities to Europe in the coming years.

The research in this article was funded by the EU. This article was originally published in Horizon, the EU Research and Innovation Magazine.  

Continue Reading

Energy News

Hydrogen heads home to challenge oil and gas as local energy supply

Published

on

by Tom Cassauwers

Hydrogen is carving out its place in the world of renewable energy. Regional developments like hydrogen valleys and hydrogen islands are serving as blueprints for larger ecosystems to produce and consume this versatile fuel locally.

The Northern Netherlands region used to be prime gas country. One of the largest gas fields in the world was found underfoot in Groningen province. Gas extraction from the territory helped bankroll the Netherlands for decades. But times are changing. 

‘Gas production is winding down,’ said Jochem Durenkamp, hydrogen project manager at New Energy Coalition. ‘Which would mean the north would lose many jobs. Hydrogen turned out to be a perfect replacement.’

With gas extraction and related jobs coming to an end, these northern regions are seeking alternatives. Furthermore, shifts in the soil from drilling for gas are causing minor earthquakes, with 72 registered in 2021 alone. This has significant economic repercussions, particularly when it damages houses in the area. As much as €1.2 billion has been paid out in compensation for earthquake damage since 1991.

The Northern Netherlands region is setting out to become a so-called “Hydrogen Valley”. The HEAVENN project, coordinated by the New Energy Coalition, is at the helm. The region is tapping European support to develop the infrastructure necessary to adopt green hydrogen as a locally produced energy supply.  

The European Union has an eventual target of 100 of these hydrogen valleys. Currently there are 23 in Europe at various stages of development, with the ambition to double this total by 2025. Dozens of projects have commenced all over Europe and in 20 countries worldwide, in a rapidly evolving clean energy investment trend worth billions. Follow the link for a map of hydrogen valleys.

The strategy is to provide a regional economic impetus while also fighting the main driver of climate change, the burning of fossil fuels. Eventually, when enough regions emerge, they will join up to create a wide-scale hydrogen-based economy founded on a clean, secure energy supply.

Green hydrogen

The Northern Netherlands is in an ideal position to take advantage of the hydrogen opportunity. Located close to the rapidly expanding offshore wind farms of the North Sea, it has a direct line of renewable energy to manufacture green hydrogen. On top of that, the previous gas exploitation in the region has created a body of knowledge and skills that easily transfers to the production, distribution, storage and consumption of hydrogen in the local economy.

The idea behind hydrogen valleys is to create a self-sufficient hydrogen ecosystem from start to finish. In the case of HEAVENN, that begins by identifying sites where the electrolysis process can be used to separate water into hydrogen and oxygen by use of electricity.

A Hydrogen Valley is a medium-sized area where clean hydrogen is produced locally and consumed by homes, vehicles and industry. The goal is to initiate a hydrogen economy at the community level. Eventually the regional hydrogen valleys will join up to create wider economic zones powered by hydrogen.

When this electricity is derived from renewable sources, like offshore wind in the case of HEAVENN, the hydrogen is considered to be a green energy source. Most usually stored as a gas, this zero-emission energy carrier is used to fuel everyday applications such as in transport, heating and industry.

HEAVENN, for example, invests in projects for hydrogen-based mobility with a number of hydrogen filling points for every kind of hydrogen powered vehicle – from cars to trucks and buses. Hydrogen will also be used to power a datacentre and to heat residential neighbourhoods.

Building energy ecosystems is not easy. ‘The project includes thirty partners,’ said Durenkamp. ‘It’s a big challenge to coordinate what they do, but building this ecosystem is key for hydrogen.’

Beyond the partners, the local community is also an important player. ‘It’s very important that inhabitants are consulted,’ said Durenkamp. ‘Where before, energy was extracted from underground, it’s now very visible in the landscape with wind turbines, solar panels and large electrolysis facilities. Whenever something is done in the project, it’s done together with the local inhabitants.’

Clean energy islands

Another region unlocking hydrogen’s potential is the Spanish island of Mallorca, which styles itself as a “Hydrogen Island”.

‘The idea of the project came when CEMEX, a cement manufacturer, announced it would close its plant on Mallorca,’ said María Jaén Caparrós. She acts as coordinator of hydrogen innovation at Enagás, the Transmission System Operator of the national gas grid in Spain. ‘With hydrogen, we want to re-industrialise the island and decarbonise the Balearic region.’

Known as GREEN HYSLAND, the project will create an ecosystem of hydrogen producers and users across the Mediterranean island. Achieving this will cut down on expensive energy imports and eliminate harmful emissions.

Central to this is an electrolysis plant that produces hydrogen from energy supplied by two newly built solar-power plants. This hydrogen is then used in a range of different applications in the locality. For example, the public transport company of the city of Palma de Mallorca is rolling out hydrogen-powered buses. Another use-case is to power the island’s vital ferry port and even to provide energy for a hotel. But community energy needs community support.

Renewable diversification

‘It’s key to have the support of society,’ said Jaén Caparrós. ‘Hydrogen is something new for the Balearic Islands. This project will not only promote reindustrialisation based on renewables, but will also provide knowledge, research and innovation. It is a milestone that the Balearic Islands must take advantage of, in order to promote the diversification of the production model with new, stable and quality jobs.’

The second related objective of GREEN HYSLAND is to reduce the emissions from the use of natural gas. They will inject part of the hydrogen into the gas grid, according to Jaén Caparrós. They are compatible sources of energy. ‘We will build a hydrogen pipeline to transport it to the injection point,’ he said, ‘Which we will use to partly decarbonise the natural gas grid.’ They plan to commence this phase by the end of 2022.

In this way, hydrogen can be mixed into the existing gas infrastructure used to heat homes, hotels and industry or generate electricity. The resulting blend of gas and green hydrogen has a lower emissions footprint than just using gas by itself, a step toward complete decarbonisation.

Hydrogen blueprints

GREEN HYSLAND even joined up with parties from outside of Europe. ‘We are 30 partners from 11 countries including Morocco and Chile,’ said Jaén Caparrós. ‘They also want to develop green hydrogen ecosystems, and hydrogen valleys have an added value if we can connect with regions inside and outside of Europe,’ she said.

‘Hydrogen valleys create new jobs, re-industrialise and create new economic activities,’ said Jaén Caparrós. ‘And on top of that they decarbonise. It serves the entire society.’

Once this infrastructure-building and experimentation phase is complete, the lessons learned will also need to scale up. Both HEAVENN and GREEN HYSLAND want to share what they learn. ‘We want to be a blueprint for other regions across the world,’ concluded Durenkamp. ‘If this project is a success, we want to share it.’

The research in this article was funded by the EU. This article was originally published in Horizon, the EU Research and Innovation Magazine.  

Continue Reading

Publications

Latest

Trending