Connect with us

Science & Technology

G2C e-Governance & e-Frauds: A Perspective for Digital Pakistan Policy

Published

on

e-Governance, sometimes referred as e-government, online-government or digital government, is the use of information and communication technologies (ICTs) to assist in the transformation of government structures and operations for cooperative and integrated service delivery for citizens and government agencies. e-Governance involves using ICT tools to improve the delivery of government services to citizens, businesses, and other government agencies. e-Governance encompasses a wide range of activities and actors, these include government-to-government (G2G), government-to-business (G2B), and government-to-citizen (G2C).

The benefits to be expected from e-Governance initiatives can be put into three major categories:

  • Improve transparency, accountability, and democracy, which reduced levels of corruption,
  • Citizen and business satisfaction and confidence with public services, and
  • Improve achievement of economic and social policy outcomes (e.g. education, health, justice, welfare, industry development etc.)

e-Governance not only plays a critical role in building inclusive, resilient societies but also, enables citizens to interact and receive services from the federal government and local governments 24 hours a day, seven days a week – 24/7. In many respects, the government-to-citizen (G2C) segment represents the backbone of e-Governance. The G2C initiatives are designed to facilitate citizen interaction with government, which is recognize to be principal objective for good governance.

Despite the opportunities e-Governance offers, it also introduces new challenges. In recent times, Government of Pakistan (GoP) has demonstrated a real willingness to transform relationships between government services and citizens, particularly by strengthening the use of ICT and by offering services online, – (Digital Pakistan Vision). Civil society is also committed to implementing such initiatives to improve democratic governance using ICT.

On the other hand, despite the possible opportunities for implementation of e-Governance, Digital Pakistan initiatives, there are a number of challenges that could prevent the recognition of anticipated benefits. Some of the challenges, for instance disparities in computer and internet access, whether due to lack of financial resources or necessary skills, pre-existing systems and conditions, digital literacy (e-literacy) and more importantly electronic frauds (e-frauds).

The term ‘fraud’ commonly includes activities such as theft, corruption, embezzlement, money laundering, bribery and extortion. From the perspective of e-fraud, it may be described as “Inducing a course of action by deceit or dishonest conduct, involving acts of omissions or the making of false statements, with the object of obtaining money or other benefit.” e-Fraud is also defined as a deception deliberately practiced to secure unfair or unlawful gain where some part of the communication between the victim and the fraudster is via a network and/or some action of the victim and/or the fraudster is performed on a computer network. As a matter of fact, e-fraud is not only technical and management problem but also a social problem.

In Pakistan, a citizen-centric approach (G2C e-governance) will enable the government to provide improved service qualities, which in turn develop the citizen satisfaction in democracy. However, due to a variety of technical, economic, and political reasons, e-Governance initiatives will take time to evolve into their full potential. Similarly, the exact scale of e-frauds (online or offline) being committed in Pakistan is currently unknown. Nevertheless, there are certain areas of concern regarding the “Digital Pakistan Policy – 2018”, for which the following recommendations are put forwarded for consideration in future reviews.

Digital Pakistan Policy must be practicable, outcome-focused, risk-based, citizen-centric, locally and globally relevant.

Policy makers must first educate themselves better with the respect to Internet of Things (IoTs), internet and cyber security along with electronic frauds (e-frauds), and formulate an effective anti e-fraud strategy within Digital Pakistan Policy.

Government must support the necessary research and development (R&D) to address digital issues (e.g. e-frauds and cyber-space ethics, network and cloud security etc.), and establish a program to educate citizenry about the digital ecosystem (e-literacy).

Government must overcome the obstacles to realistic, timely, actionable information sharing with all government institutions/departments and stakeholders.

Government must get its own house in order, continue its efforts to strengthen good governance with emphasis on merit-based institutional development and rule of law. And, exceptionally eliminate corruption and nepotism from the society.

Mirza A.A. Baig is CAS-TWAS President’s Fellow at University of Science and Technology of China (USTC). Biomedical Health Informatics Professional and Freelance Science Writer.

Continue Reading
Comments

Science & Technology

The World After COVID-19: Does Transparent Mean Healthy?

Maria Gurova

Published

on

The insanity of despair and primaeval fear for one’s health (and today, no matter how ironic and paradoxical it sounds, this may be the state of mind that brings many of us together) will most likely give rise to a new global formation that will then become a global reality. It is still hard to say what it will be like exactly, but it is clear that the world will become more transparent. And I do not mean in the usual sense of anti-corruption measures, but rather in the original sense of the word – the world will become more “see-through.” Our temperature will be monitored. Smartphones with built-in sensors will collect precise data not only about our clicks and likes, but about our physical and possibly emotional state. The world and the people that live in it will undergo a number of changes once the current coronavirus pandemic is over, and many of those changes will be accompanied by a leap in technological development.

For many experts and scientists, the events that are unfolding today are reminiscent of what happened in 2003, when the SARS virus presented the first large-scale threat to human health of the new millennium. Unlike today’s unbidden crowned guest, SARS was not so virulent, yet it caused major concerns for a number of countries, particularly in East and Southeast Asia. Hence the deadly lessons learned in Singapore and partly in Taiwan, where the government has for two decades now been successfully using a system of mass surveillance of the everyday life of its citizens – a system that has received the approval of the people. This system is part of Singapore’s cybersecurity strategy and allows the physical condition of large masses of people to be monitored, thereby preventing diseases from spreading and escalating into epidemics. This, combined with their ability to enforce extremely strict quarantine measures and carry out mass testing instead of the selective testing currently practised in Europe and Russia, has allowed Singapore and Taiwan to contain the spread of the disease and prevent it from turning into an epidemic. Of course, their compact territories have certainly played a part here. Other countries, for instance, Israel and Russia, have already followed this example and approved a monitoring system that uses mobile data and geolocation in order to trace the movements of persons with confirmed infection. We have to assume that one of the first steps after the COVID-19 pandemic will be to embed this surveillance system even deeper into the public life. Most likely, this step will be met with approval instead of protests and street rallies.

I would not wish to speak for everyone, but it seems to me that the choice between health and privacy is a no-brainer. The pandemic will end, and what the world emerging from the pandemic will look like is an interesting question worthy of discussion. To quote the Deputy Minister of Health of Iran, who had COVID-19, we can note that the coronavirus came to us from a relatively safe country and, contrary to recent rumours, it does not only affect those of Asian heritage: quite the opposite, it is very democratic in its choice of victims, which is to say, it affects everyone.

Hence the question: by self-isolating, we are buying doctors and scientists time to find a cure to the virus and test vaccines, but what are we going to do in the event of a new pandemic? Here, humanity faces two choices. The first is to give free rein to nationalists who are already jubilant and triumphant over the failures of globalization and the inability of liberal democratic countries to shut down their borders to viruses and undesirable immigrants. The second is to move to a radically new formation where we will become even more mutually dependent and open to our societies and governments, because this will be a mandatory condition for moving about and doing business, and perhaps even starting a family. Personal secrets will become a thing of the past, a fairy tale we tell our grandchildren. In fact, the issue is far more serious, with multiple additions and ensuing consequences.

Following the COVID-19 pandemic, consensus and mutual understanding between states will be relevant like never before, especially since the problems of disarmament, nuclear warheads, defence budgets propped up by taxpayer money, international sanctions, etc., that appeared and developed during the presidencies of Nikita Khrushchev and Ronald Reagan may finally move into the background. Instead, world leaders, especially given that most of them are at an age that makes them particularly vulnerable to the coronavirus, should start thinking about new plans for investing in healthcare, socioeconomic aspects of life and technological development, because those will be intrinsically linked with the other aspects of improving the state mentioned above. Will this represent a new social contract between the government, the public and the citizen? Probably. Will it represent a new pact between governments? One would hope so. Perhaps the coronavirus pandemic will break down the old world and give rise to the new one that so many expected to appear in the 1990s. But what was to await us back then was proxy wars and a confrontation through sanctions that split societies from within and raised barriers between states. Maybe this new world will be one where surveillance cameras and sensors will first prompt a feeling of relief and then become an integral part of the picture. Perhaps it will be a world where life without external surveillance and control will appear unsafe and unnatural.

From our partner RIAC

Continue Reading

Science & Technology

Future Goals in the AI Race: Explainable AI and Transfer Learning

Published

on

Recent years have seen breakthroughs in neural network technology: computers can now beat any living person at the most complex game invented by humankind, as well as imitate human voices and faces (both real and non-existent) in a deceptively realistic manner. Is this a victory for artificial intelligence over human intelligence? And if not, what else do researchers and developers need to achieve to make the winners in the AI race the “kings of the world?”

Background

Over the last 60 years, artificial intelligence (AI) has been the subject of much discussion among researchers representing different approaches and schools of thought. One of the crucial reasons for this is that there is no unified definition of what constitutes AI, with differences persisting even now. This means that any objective assessment of the current state and prospects of AI, and its crucial areas of research, in particular, will be intricately linked with the subjective philosophical views of researchers and the practical experience of developers.

In recent years, the term “general intelligence,” meaning the ability to solve cognitive problems in general terms, adapting to the environment through learning, minimizing risks and optimizing the losses in achieving goals, has gained currency among researchers and developers. This led to the concept of artificial general intelligence (AGI), potentially vested not in a human, but a cybernetic system of sufficient computational power. Many refer to this kind of intelligence as “strong AI,” as opposed to “weak AI,” which has become a mundane topic in recent years.

As applied AI technology has developed over the last 60 years, we can see how many practical applications – knowledge bases, expert systems, image recognition systems, prediction systems, tracking and control systems for various technological processes – are no longer viewed as examples of AI and have become part of “ordinary technology.” The bar for what constitutes AI rises accordingly, and today it is the hypothetical “general intelligence,” human-level intelligence or “strong AI,” that is assumed to be the “real thing” in most discussions. Technologies that are already being used are broken down into knowledge engineering, data science or specific areas of “narrow AI” that combine elements of different AI approaches with specialized humanities or mathematical disciplines, such as stock market or weather forecasting, speech and text recognition and language processing.

Different schools of research, each working within their own paradigms, also have differing interpretations of the spheres of application, goals, definitions and prospects of AI, and are often dismissive of alternative approaches. However, there has been a kind of synergistic convergence of various approaches in recent years, and researchers and developers are increasingly turning to hybrid models and methodologies, coming up with different combinations.

Since the dawn of AI, two approaches to AI have been the most popular. The first, “symbolic” approach, assumes that the roots of AI lie in philosophy, logic and mathematics and operate according to logical rules, sign and symbolic systems, interpreted in terms of the conscious human cognitive process. The second approach (biological in nature), referred to as connectionist, neural-network, neuromorphic, associative or subsymbolic, is based on reproducing the physical structures and processes of the human brain identified through neurophysiological research. The two approaches have evolved over 60 years, steadily becoming closer to each other. For instance, logical inference systems based on Boolean algebra have transformed into fuzzy logic or probabilistic programming, reproducing network architectures akin to neural networks that evolved within the neuromorphic approach. On the other hand, methods based on “artificial neural networks” are very far from reproducing the functions of actual biological neural networks and rely more on mathematical methods from linear algebra and tensor calculus.

Are There “Holes” in Neural Networks?

In the last decade, it was the connectionist, or subsymbolic, approach that brought about explosive progress in applying machine learning methods to a wide range of tasks. Examples include both traditional statistical methodologies, like logistical regression, and more recent achievements in artificial neural network modelling, like deep learning and reinforcement learning. The most significant breakthrough of the last decade was brought about not so much by new ideas as by the accumulation of a critical mass of tagged datasets, the low cost of storing massive volumes of training samples and, most importantly, the sharp decline of computational costs, including the possibility of using specialized, relatively cheap hardware for neural network modelling. The breakthrough was brought about by a combination of these factors that made it possible to train and configure neural network algorithms to make a quantitative leap, as well as to provide a cost-effective solution to a broad range of applied problems relating to recognition, classification and prediction. The biggest successes here have been brought about by systems based on “deep learning” networks that build on the idea of the “perceptron” suggested 60 years ago by Frank Rosenblatt. However, achievements in the use of neural networks also uncovered a range of problems that cannot be solved using existing neural network methods.

First, any classic neural network model, whatever amount of data it is trained on and however precise it is in its predictions, is still a black box that does not provide any explanation of why a given decision was made, let alone disclose the structure and content of the knowledge it has acquired in the course of its training. This rules out the use of neural networks in contexts where explainability is required for legal or security reasons. For example, a decision to refuse a loan or to carry out a dangerous surgical procedure needs to be justified for legal purposes, and in the event that a neural network launches a missile at a civilian plane, the causes of this decision need to be identifiable if we want to correct it and prevent future occurrences.

Second, attempts to understand the nature of modern neural networks have demonstrated their weak ability to generalize. Neural networks remember isolated, often random, details of the samples they were exposed to during training and make decisions based on those details and not on a real general grasp of the object represented in the sample set. For instance, a neural network that was trained to recognize elephants and whales using sets of standard photos will see a stranded whale as an elephant and an elephant splashing around in the surf as a whale. Neural networks are good at remembering situations in similar contexts, but they lack the capacity to understand situations and cannot extrapolate the accumulated knowledge to situations in unusual settings.

Third, neural network models are random, fragmentary and opaque, which allows hackers to find ways of compromising applications based on these models by means of adversarial attacks. For example, a security system trained to identify people in a video stream can be confused when it sees a person in unusually colourful clothing. If this person is shoplifting, the system may not be able to distinguish them from shelves containing equally colourful items. While the brain structures underlying human vision are prone to so-called optical illusions, this problem acquires a more dramatic scale with modern neural networks: there are known cases where replacing an image with noise leads to the recognition of an object that is not there, or replacing one pixel in an image makes the network mistake the object for something else.

Fourth, the inadequacy of the information capacity and parameters of the neural network to the image of the world it is shown during training and operation can lead to the practical problem of catastrophic forgetting. This is seen when a system that had first been trained to identify situations in a set of contexts and then fine-tuned to recognize them in a new set of contexts may lose the ability to recognize them in the old set. For instance, a neural machine vision system initially trained to recognize pedestrians in an urban environment may be unable to identify dogs and cows in a rural setting, but additional training to recognize cows and dogs can make the model forget how to identify pedestrians, or start confusing them with small roadside trees.

Growth Potential?

The expert community sees a number of fundamental problems that need to be solved before a “general,” or “strong,” AI is possible. In particular, as demonstrated by the biggest annual AI conference held in Macao, “explainable AI” and “transfer learning” are simply necessary in some cases, such as defence, security, healthcare and finance. Many leading researchers also think that mastering these two areas will be the key to creating a “general,” or “strong,” AI.

Explainable AI allows for human beings (the user of the AI system) to understand the reasons why a system makes decisions and approve them if they are correct, or rework or fine-tune the system if they are not. This can be achieved by presenting data in an appropriate (explainable) manner or by using methods that allow this knowledge to be extracted with regard to specific precedents or the subject area as a whole. In a broader sense, explainable AI also refers to the capacity of a system to store, or at least present its knowledge in a human-understandable and human-verifiable form. The latter can be crucial when the cost of an error is too high for it only to be explainable post factum. And here we come to the possibility of extracting knowledge from the system, either to verify it or to feed it into another system.

Transfer learning is the possibility of transferring knowledge between different AI systems, as well as between man and machine so that the knowledge possessed by a human expert or accumulated by an individual system can be fed into a different system for use and fine-tuning. Theoretically speaking, this is necessary because the transfer of knowledge is only fundamentally possible when universal laws and rules can be abstracted from the system’s individual experience. Practically speaking, it is the prerequisite for making AI applications that will not learn by trial and error or through the use of a “training set,” but can be initialized with a base of expert-derived knowledge and rules – when the cost of an error is too high or when the training sample is too small.

How to Get the Best of Both Worlds?

There is currently no consensus on how to make an artificial general intelligence that is capable of solving the abovementioned problems or is based on technologies that could solve them.

One of the most promising approaches is probabilistic programming, which is a modern development of symbolic AI. In probabilistic programming, knowledge takes the form of algorithms and source, and target data is not represented by values of variables but by a probabilistic distribution of all possible values. Alexei Potapov, a leading Russian expert on artificial general intelligence, thinks that this area is now in a state that deep learning technology was in about ten years ago, so we can expect breakthroughs in the coming years.

Another promising “symbolic” area is Evgenii Vityaev’s semantic probabilistic modelling, which makes it possible to build explainable predictive models based on information represented as semantic networks with probabilistic inference based on Pyotr Anokhin’s theory of functional systems.

One of the most widely discussed ways to achieve this is through so-called neuro-symbolic integration – an attempt to get the best of both worlds by combining the learning capabilities of subsymbolic deep neural networks (which have already proven their worth) with the explainability of symbolic probabilistic modelling and programming (which hold significant promise). In addition to the technological considerations mentioned above, this area merits close attention from a cognitive psychology standpoint. As viewed by Daniel Kahneman, human thought can be construed as the interaction of two distinct but complementary systems: System 1 thinking is fast, unconscious, intuitive, unexplainable thinking, whereas System 2 thinking is slow, conscious, logical and explainable. System 1 provides for the effective performance of run-of-the-mill tasks and the recognition of familiar situations. In contrast, System 2 processes new information and makes sure we can adapt to new conditions by controlling and adapting the learning process of the first system. Systems of the first kind, as represented by neural networks, are already reaching Gartner’s so-called plateau of productivity in a variety of applications. But working applications based on systems of the second kind – not to mention hybrid neuro-symbolic systems which the most prominent industry players have only started to explore – have yet to be created.

This year, Russian researchers, entrepreneurs and government officials who are interested in developing artificial general intelligence have a unique opportunity to attend the first AGI-2020 international conference in St. Petersburg in late June 2020, where they can learn about all the latest developments in the field from the world’s leading experts.

From our partner RIAC

Continue Reading

Science & Technology

How as strategist we can compete with the sentient Artificial intelligence?

Published

on

Universe is made up of humans, stars, galaxies, milky ways, black holes other objects linked and connected with each other. Everything in the universe has its level of mechanisms and complexities. Humans are very complex creatures man-made objects are more complex and difficult to understand. With the passage of time human beings are more evolved and become more advanced technologically. Human inventions are reached to that level of advancement, which initiates a competition between machines and humans, itself. Humans are the most intelligent mortals on the earth but now human are being challenged by the intelligence (artificial intelligence), which was invented as helping hand for humans to increase efficiency. Here it is important to question that whether human’s intelligence was not enough to survive in the fast growing technological world? Or the man-made intelligence has reached to its peak so that humans come in competition with machines and human intelligence is challenged by the artificial intelligence? If there is competition, then how strategists could compete with artificial intelligence? To answer these questions we first need to know what artificial intelligence actually is.

Artificial intelligence was presented by John McCarthy in 1955; he characterized computerized reasoning in 1956 at Dartmouth Conference, the main counterfeit consciousness meeting that: Every fragment of learning or another element of insight can on a basic level be so unequivocally depicted that a machine can be made to empower it. An endeavor will be made to learn how to influence machines to exploit vernacular, mount deliberations and ideas, take care of sort of issues now held for people, and enhance themselves. There are seven main features of artificial intelligence as follows:-

“Simulating higher functions of brain

Programming a computer to use general language

Arrangement of hypothetical neurons in a manner  so that they can form concept

Way to determine and measure problem complexity

Self-improvement

Abstraction: it is defined as quality of dealing with ideas , not with events

Creativity and randomness”

Another definition is given by Elaine rich who expressed that counterfeit consciousness is tied in with making computer to do such thing which are presently being finished by human. He said that each computer is artificial intelligence framework. Jack Copland expressed that critical elements of artificial intelligence are speculation discovering that empowers the student to perform in the circumstance that are beforehand experienced. At that point its thinking, to reason is to make inference fittingly, critical thinking implied that by giving information it can finish up comes about lastly trickiness intends to break down a checked situation and investigating the highlights and connection between the articles and self-driving autos are its case.

Artificial intelligence is very common in the developed nations and developing nations are using artificial intelligence according to resources. Now question is that how artificial intelligence is being utilized in the above mentioned fields? Use of AI will be elaborated with help of phenomenon and examples of related fields for better understanding.

World is being more advanced and technologies are improving as well. In this situation states become conscious about their security. At this point states are involving AI approaches in their defense systems and some states are already using artificially integrated technologies. On 11 May 2017, Dan Coats, the executive of US National Intelligence, conveyed declaration to the US Congress on his yearly Worldwide Threat Assessment. In the openly discharged archive, he said that (AI) is progressing computational abilities that advantage the economy, yet those advances likewise empower new military capacities for our enemies’. In the meantime, the US Department of Defense (DOD) is taking a shot at such frameworks. Undertaking Maven, for example, otherwise called the Algorithmic Warfare Cross-Functional Team (AWCFT), is intended to quicken the incorporation of huge information, machine learning and AI into US military capacities. While the underlying focal point of AWCFT is on computer vision calculations for protest identification and characterization, it will unite all current calculation based-innovation activities related with US resistance knowledge. Command, control, communications, computers, intelligence, surveillance and reconnaissance (C4ISR) are achieving new statures of proficiency that empower information accumulation and preparing at exceptional scale and speed. At the point when the example acknowledgment calculations being produced in China, Russia, the UK, the US and somewhere else are combined with exact weapons frameworks, they will additionally expand the strategic preferred standpoint of unmanned elevated vehicles (UAVs) and other remotely worked stages. China’s resistance part has made achievements in UAV ‘swarming’ innovation, including an exhibition of 1,000 EHang UAVs flying in arrangement at the Guangzhou flying demonstration in February 2017. Potential situations could incorporate contending UAV swarms attempting to hinder each other’s C4ISR arrange, while at the same time drawing in dynamic targets.

Humans are the most intelligent creatures that created an artificial intelligence technology. The technology we human introduced is more intelligent than us and works fastest than humans. So here is big question marks that can humans compete with the artificial intelligence in near future. Now days it seems that AI is replacing humans in every field of life so what will be condition after decades or two. There is an alarming competition started between the human and AI. AI was called as demon by Tesla Elon Musk. A well physicist Stephen Hawking also stated that in future artificial intelligence could be proved as a bad omen for humanity. But signs of all this clear and we can clearly see the replacement of humans. We human are somehow losing the competition. But it is also clear that a creator can be destructor also. So as strategist we must have the counter strategies and second plans to overcome the competition. The edge human have over AI is the ability to think and we generate this in AI integrated techs so we must set the level for this. Otherwise this hazard could be a great threat in future and humanity could possibly be an extinct being.

Continue Reading

Publications

Latest

Central Asia1 hour ago

Russia-China relations: Engagement abilities in managing their differences in Central Asia

Ever since the collapse of the Soviet Union, Moscow and Beijing have converted their relationship from being Cold War rivals...

Tourism3 hours ago

UNWTO Launches a Call for Action for Tourism’s COVID-19 Mitigation and Recovery

The World Tourism Organization (UNWTO) has released a set of recommendations calling for urgent and strong support to help the...

South Asia5 hours ago

COVID-19 in India: The bright and the dark sides

Many fortresses have collapsed and the invisible enemy has entered everywhere. Indians are at the doorsteps of one of the...

Americas7 hours ago

American law firm’s frivolous lawsuit against China targets the wrong defendant

When I first heard the recent news that Florida’s Berman Law Group had the chutzpah to sue China for trillions...

EU Politics10 hours ago

Explainer: EU Emergency Support Instrument for the healthcare sector

What does the Commission propose to support the healthcare sector? The Commission wants to directly support the healthcare systems of...

Economy12 hours ago

Negative effects for Russia of the US-China Phase-One-Deal

After a 1.5-year trade dispute between the United States and China in which both have raised mutual import tariffs from...

New Social Compact14 hours ago

Coronavirus: An Act Of God Or Humans

Corona virus started in Wuhan China and has spread all over the world; almost thousands of people have been killed...

Trending