Connect with us

Energy

What would it take to limit the global temperature rise to 1.5 °C?

Published

on

Authors: Laura Cozzi and Tim Gould*

Every year, the World Energy Outlook scenarios are updated to take into account the latest data and developments in policies, technology, costs and science. The major new scientific element for this year’s WEO was without doubt the Special Report on Global Warming of 1.5 °C, which the Intergovernmental Panel on Climate Change (IPCC) published in late 2018.

The IPCC report contains a wealth of new information about the risks of global warming, underlining that many of the physical impacts of climate change escalate in a non-linear fashion in relation to increases in global temperature. In other words, the impacts of 2.0 °C of warming are far worse than those of 1.5 °C.

The energy sector is at the front line of this issue, as it is by far the largest source of the emissions that cause global warming. As a result, this year’s WEO explores in detail what a pathway consistent with capping the temperature rise at 1.5 °C would mean for the energy sector. The discussion goes to the heart of energy’s dual role in modern civilisation: it’s essential to all the comforts of modern life – our homes, workplaces, leisure and our infrastructure – but the way it’s largely produced and consumed at the moment damages the environment on which we all depend.

Although the task of tackling climate change is huge, it is relatively simple to define. Global emissions need to peak as soon as possible and then fall rapidly until they hit zero – or, as the Paris Agreement puts it, until there is a “balance between anthropogenic emissions by sources and removals by sinks,” a situation sometimes called net-zero.

It’s not the only variable that counts, but the year at which global emissions reach net-zero is a critically important indicator for the prospects of stabilising global temperatures. The Paris Agreement specifies that this needs to happen “in the second half of this century.” The IPCC’s 1.5 °C report underlines that there is a major difference between reaching net-zero in 2100 versus 2050, and attention in many countries is increasingly focused on earlier dates.

After the UN Climate Summit in September, at least 65 jurisdictions, including the European Union, had set or were actively considering long-term net-zero carbon targets, including efforts to reach net-zero in 2050 or sooner. These economies together accounted for 21% of global gross domestic product and nearly 13% of energy-related CO2 emissions in 2018.

The Sustainable Development Scenario

The Sustainable Development Scenario relies on all of these net-zero targets being achieved on schedule and in full. The technology learning and policy momentum that they generate means that they become the leading edge of a much broader worldwide effort, bringing global energy-related CO2 emissions down sharply to less than 10 billion tonnes by 2050, on track for global net-zero by 2070.

There are no single or simple solutions to achieve this result. Rapid energy transitions of the sort envisaged by the Sustainable Development Scenario would require action across all sectors, utilising a wide range of energy technologies and policies. Energy efficiency improvements and massive investment in renewables – led by solar PV – take the lead, but there are also prominent roles in this scenario for carbon capture, utilisation and storage (CCUS), hydrogen, nuclear and others.

Among the range of technology solutions proposed for global emissions, there is one category that is used only very sparingly. These are the so-called negative emissions technologies, which actually remove CO2 from the atmosphere. Examples are bioenergy used in conjunction with CCUS (often called “BECCS”) and direct air capture. These technologies may yet play a critical role, but the level at which they are deployed in the Sustainable Development Scenario (0.25 billion tonnes in 2050) is lower than nearly all of the 1.5 °C scenarios assessed by the IPCC.

The Sustainable Development Scenario and the pursuit of 1.5 °C

If emissions were to stay flat, at the net-zero level, from 2070 until the end of the century, then the Sustainable Development Scenario is “likely” (with 66% probability) to limit the rise in the average global temperature to 1.8 °C, which is broadly equivalent to a 50% probability of a stabilisation at 1.65 °C.

If negative emissions technologies of the sort mentioned above could be deployed at scale, then emissions could actually go below zero – meaning that carbon dioxide is being withdrawn from the atmosphere on a net basis. This is a very common feature of the scenarios assessed by the IPCC in its special report: 88 out of the 90 scenarios in the IPCC’s report assume some level of net negative emissions.

A level of net negative emissions significantly smaller than that used in most scenarios assessed by the IPCC would give the Sustainable Development Scenario a 50% probability of limiting the rise in global temperatures to 1.5 °C.

It is technically conceivable that the world will reach a point where large quantities of CO2 are absorbed from the atmosphere, but there are uncertainties about what may be possible and about the likely impacts. As we have pointed out in previous WEOs, when designing deep decarbonisation scenarios, there are reasons to limit reliance on early-stage technologies for which future rates of deployment are highly uncertain. 

That is why the WEO has always emphasised the importance of early policy action: the pathway followed by the Sustainable Development Scenario relies on an immediate and rapid acceleration in energy transitions.

With the same precautionary reasoning in mind, the WEO-2019 also explores what it would take to achieve a 50% probability of stabilisation at 1.5 °C without net negative emissions.

A 1.5 °C scenario that does not rely on negative emissions technologies implies achieving global net-zero emissions around 2050. This in turn means a reduction in emissions of around 1.3 billion tonnes CO2 every year from 2018 onwards. That amount is roughly equivalent to the emissions from 15% of the world’s coal fleet or from 40% of today’s global passenger car fleet.

The year by which different economies would need to hit net-zero in such a scenario would vary, but the implication for advanced economies is that they would need to reach this point in the 2040s. The difference, compared with the Sustainable Development Scenario, would be much starker for many developing economies, which would all need to be at net-zero by 2050.

A zero-carbon power system would need to become a reality at least a few years before the entire economy reaches net-zero. This implies moving to a zero-emissions electricity system in the 2030s for advanced economies and around 2040 for developing economies.

Discussing target dates in this context is useful, but the really tough part is working out how to get there. That requires credible plans to actually reduce emissions quickly across the entire economy, pathways that work not just from the perspectives of technical feasibility or cost-efficiency (although these are important) but also take into account the need for social acceptance and buy-in.

The technical solutions in the power sector, at least, are well known, although the scale and speed at which clean energy technologies would need to be deployed – and existing facilities either repurposed, retrofitted with CCUS, or retired – is breath-taking. But any economy-wide net-zero target also needs to find answers quickly for sectors that are much harder to decarbonise, notably buildings, heavy industries like cement and steel, aviation and freight transport. Achieving such an outcome, without compromising the affordability or reliability of energy, represents an extraordinary challenge.

The energy sector is rightly at the heart of the climate debate, but it cannot deliver such a transformation on its own. Change on a massive scale would be necessary across a very broad front. As the IPCC 1.5 °C report says, this type of scenario would require rapid and far-reaching transitions not only in energy, but also in land, urban infrastructure – including transport and buildings – and industrial systems.

In its 2019 edition, the World Energy Outlook once again puts the spotlight on the huge disparity between the kind of transformation that is required and the pathway that the world is on, according to our assessment of today’s policy plans and ambitions and the rising energy needs of a growing global population and economy.

As the IEA’s Executive Director, Dr Fatih Birol, commented at the WEO launch this week, the world urgently needs to put a laser-like focus on bringing down global emissions.

“This calls for a grand coalition encompassing governments, investors, companies and everyone else who is committed to tackling climate change,” Dr Birol said. “Our Sustainable Development Scenario is tailor-made to help guide the members of such a coalition in their efforts to address the massive climate challenge that faces us all.”

*Tim Gould, Head of Division for Energy Supply Outlooks and Investment.

IEA

Continue Reading
Comments

Energy

How ASEAN should step up to accelerate sustainable energy within the region

Published

on

ASEAN is favored to be the 4th largest economy in the world by 2030 after showing impressive economic growth in the last decade. However, to reach that goal, ASEAN member states need to make sure that they can provide reliable access to energy to support industrial development. Unfortunately, as the region still imports 40% of its primary energy supply with fossil fuels becoming the largest share, the promise of ASEAN economic growth is currently at stake.

Over the years, ASEAN has been known for its heavily reliant on fossil fuels to meet domestic demand. ASEAN Center for Energy has reported that more than 80% of ASEAN’s energy mix in 2017 was fueled by fossil energy with oil accounting for 38,2% of total share and followed by gas (23.2%), and coal (22.3%). Vietnam and Indonesia, as the largest oil and coal producers respectively, have become important players for energy-importing countries such as Thailand, Philippines, and Malaysia. This long historic record on fossil consumption has posed a threat for Southeast Asia to become the slowest region in the world to shift to renewables.

But even so, it doesn’t mean that the ASEAN member states haven’t made any efforts at all. Vietnam might have shown the greatest accomplishment in accelerating the energy transition compared to other countries. Between 2016-2020, Vietnam has successfully doubled its production of renewables from 17.000 to over 35.000 megawatts. The rapid growth of solar panels in just four years has even made Vietnam become the third-largest solar market globally by 2020. Furthermore, ASEAN has also witnessed promising growth in the use of hydropower. Lao PDR, as traversed by The Greater Mekong, has powered 98.8% of its national electricity with hydropower generators in 2017. It even exports its energy to Thailand, Vietnam, and Cambodia through the transmission lines and is looking for expansion to Malaysia and Singapore, aiming to become Southeast Asia’s battery.

Seeing these potentials for sustainable energy deployment, the next question would be whether it is enough to push ASEAN to phase out the fossil fuel industry. Unfortunately, the same report from ASEAN Center for Energy has estimated that fossil fuel would still provide the majority of energy supply in 2040 even if ASEAN member states adopt a progressive scheme such as APAEC Targets Scenario. This is because energy security still presents a sensitive issue for Southeast Asia, where fossil fuels are perceived to be more reliable and cheaper than renewables. In consequence, while ASEAN will witness an enchantment of renewables in the following years, it will also see the growing trend in the use of clean coal technology, especially in major producer countries like Indonesia and Malaysia. Even Vietnam, which is considered the most successful country in accelerating renewables, will continue to rely on coal due to such perception of fossil fuels. As long as fossil fuels are still reckoned to be the main asset  of energy security, ASEAN won’t go far with its transition.

The incapability of ASEAN member states to undertake adequate transition on their own, makes regional cooperation becomes crucial. So far, the two most noticeable cooperation that promotes energy interconnections within the region are ASEAN Power Grid (APG) and Greater Mekong Subregion (GMS) Program. APG has been run under APAEC since 1999 to facilitate cross-border electricity trade and enhance the integration of Member States’ power systems. To date, 7 of 16 power interconnection projects have been completed mainly in The Upper West System (or in the Greater Mekong Subregion) and The Lower West System which covered Thailand, Peninsular Malaysia, Singapore, and Indonesia. However, most interconnection projects are still based on bilateral agreements and thus have no integrated regional power architecture. One program conducted on a multilateral basis is Lao PDR-Thailand-Malaysia-Singapore Power Integration Project (LTMS-PIP), yet the trading is still limited to a unidirectional flow of electricity. The energy cooperation under GMS also presents a similar problem where all projects still occur on bilateral deals.

Although bilateral cooperation carried out under APG and GMS has helped the member states to fulfill their domestic demand, implementing a more integrated power grid with a multilateral trading system will enhance the region’s energy security. This is because a regional power transmission grid with multilateral exchange offers more alternative resources and geographic diversification that will lower the systemic risks on renewables infrastructure. For example, countries with abundant clean energy like Lao PDR can transfer their hydropower to areas of deficit such as Malaysia and Singapore. Whilst, at the same time, surplus energy from one country can be sold to another through the power grid. This is where the multilateral trading regime becomes relevant to improve the accessibility and stability of energy consumption. Additionally, an interconnected power grid can also attract more investment as large-scale renewables will become more profitable.

It is therefore very timely for ASEAN to step up the game by accelerating the construction of an integrated power grid across the region. Without a strong commitment and sufficient transition, Southeast Asia’s economy could plummet by 11% by the end of the century. An integrated power grid might be the best possible scenario to prolong ASEAN’s economic growth in the future.

Continue Reading

Energy

The Insane Energy Policies of the Biden Administration

Published

on

With the projected loss of over 5 million barrels of oil a day due to sanctions against Russia, as a result of Russia’s invasion of Ukraine, the world faces an artificial energy crisis.  This crisis will throw the world’s economy into turmoil, and possibly throw the world into a prolonged economic slump. 

With the United States now relaxing sanctions against Venezuela in order to increase oil flow into the world energy market, and going hat in hand to the right wing Saudi Arabian government, the past policies of the United States are in a state of disarray.  By appealing to right wing governments in Saudi Arabia and Venezuela, the Biden Administration is allowing these governments to benefit from the Russia-Ukraine War, and punishing the American people by refusing to develop the ample supplies of shale oil that is in the United States.

What is glaringly absent from the Biden Administration’s energy policies is ignoring, and refusing to allow oil companies to develop the massive oil shale deposits in the Green River Formation.   The Green River Formation contains up to 4.3 trillion barrels of shale oil, which could be easily developed, and at a cost far below the average cost of developing either the current shale oil fields or the normal method of extracting oil from other traditional oil fields.

With the Biden Administration freezing oil drilling on federal land, the energy policy by the Biden Administration is quite literally insane.

The Green River Formation

The Green River Formation is located at the Green River in western Colorado, eastern Utah, and southwestern Wyoming.

The energy resources of the Green River Formation are not a true oil, but a form of pre-oil called kerogen. Kerogen is insoluble in water and in other organic solvents such as benzene or alcohol. However, when the kerogen is heated under pressure it breaks down into recoverable gaseous and liquid substances resembling petroleum. It is possible to break down this substance into synthetic oil.

Unlike normal processes of extracting shale oil called fracking, a process called pyrolysis is used. Pyrolysis occurs in the absence or near absence of oxygen. The rate of pyrolysis increases with temperature. “Pyrolysis transforms organic materials into their gaseous components, a solid residue of carbon and ash, and a liquid called pyrolytic oil (or bio-oil). Pyrolysis has two primary methods for removing contaminants from a substance: destruction and removal.”

The Hydraulic Fracturing Method

Hydraulic fracturing is used to recover oil and natural gas in oil shale deposits, where traditional oil drilling methods are not capable of recovering the oil in the rock strata. Hydraulic fracturing is also known as “fracking.” In order to recover the oil using fracking, a well is drilled into the rock strata containing the recoverable oil and natural gas. Then water, sand, and chemicals are injected into the well under high water pressure to continue to fracture the rock strata.

This then forces the oil and natural gas out of the well and is recovered into holding containers for further processing.

A huge amount of water is used during the fracking process. This is called the water cost. In a normal fracking procedure, between 1.5 to 9.7 million gallons of water are used to complete the fracking process for just one well. The water used during fracking becomes too polluted to be able to be used for human consumption. While the water used in fracking can be treated to return it to a potable status, the cost of doing so is so high, that typically the contaminated water is pumped into an underground chamber and removed from the rainwater cycle.

The technology to develop the Green River Formation does not use typical fracturing methods, so the water cost for the extraction is minimal. Because of the dramatically lower water cost, the breakeven point for extracting the kerogen is much less than traditional fracking.

The Green River Formation is a national security issue

The economic and political consequences of Russia invading Ukraine are now becoming clear.

One of the more obvious consequences has been the rapid rise in the price of oil. As of June 13,  the spot price of oil was $121.60 a barrel. Despite pleas from the Biden administration to Saudi Arabia to increase oil production, the Saudis have refused to do so. The United Arab Emirates appears to be siding with the Saudis and have also declined to raise oil production.

The Saudis are unhappy with the Biden administration’s efforts to renegotiate the Iran nuclear deal. They are also convinced that they have more in common with Russia in the current international environment. The Saudis are also angered by the pullback of support by the United States for its war in Yemen. This would appear to be the death knell of the agreement between the United States and Saudi Arabia where the U.S. guaranteed the national security of Saudi Arabia, while the Saudis guaranteed a steady supply of oil.

With the world upended because of Russia’s invasion of Ukraine, and the need for Europe to have steady oil and natural gas supplies, it is essential that the United States tap its vast oil shale reserves in the Green River Formation. This would help stabilize the energy security of the United States and its European allies. It would also make the United States 100% energy secure and free the United States from the cauldron of Middle East politics.

It should be noted here that this type of action by the United States would not be adding to the use of fossil fuels in the world. The exploitation of the Green River Formation would simply be displacing the use of fossil fuels from other sources of oil.

The cost of extracting this energy source cannot be accurately estimated. However, since the current technology available consumes less water because of the volatilization of water effect, the water cost is minimal, and so the breakeven cost of extracting a barrel of oil is significantly less than conventional fracking methods.

Reuters has estimated that the breakeven point for shale oil produced by fracking is $50. As noted above, fracking has a high-water cost. Since the current technology has a much lower water cost, it can be safely estimated to have a breakeven point of between $25 to $35 per barrel. If economies of scale are used, the cost could fall to as low as $15 to $25 a barrel.

Continue Reading

Energy

Looking beyond the Energy Price Shock to China’s Low Carbon Transition

Published

on

st

Authors: Martin Raiser, Sebastian Eckardt

The conflict in Ukraine has caused a massive shock to the global economy. Crude oil prices in early March spiked to as high as $140 per barrel, levels that were last seen in 2008. While prices have since come down from these peaks, they remain elevated, fueling already high inflation and hurting consumers and economic growth worldwide. Faced with this shock, countries everywhere are reappraising priorities, putting resilience at front and center. A renewed emphasis on food and energy security has compelled governments to reintroduce fossil fuel subsidies and ramp up domestic oil, gas and coal production, seemingly placing efforts to curb climate change on the back burner.

These reactions are understandable. A tactical retreat in the short run may be the price to pay to maintain public support for the long-term goal. But the economic case for accelerated climate action remains as strong as ever. For a country such as China with the domestic policy space to act, there are three key reasons to stay the course on the low carbon transition and aim for an early peak in emissions.

First, accelerating the energy transition would strengthen Beijing’s resilience to the volatility of global fossil fuel prices by reducing its dependence on oil & gas imports. Last year alone, China imported fossil fuels – oil, gas, and coal – worth $ 365.7 billion – the equivalent of more than two percent of the country’s gross domestic product (GDP). This dependence on fuel imports is exposing the economy to global commodity price fluctuations. In contrast, renewable energy is essentially a domestic resource, especially for China, which is a major producer of key renewable energy technologies from wind turbines to battery storage.

Secondly, while higher energy prices may boost the short-term global supply of fossil fuels, in the longer-term outlook, higher and more volatile energy prices will push incentives for energy importers to diversify away from fossil fuels. This will likely catalyze individual and global efforts to decarbonize energy systems, boosting global demand for low carbon technologies and alternative sources of energy. China has the technological capabilities to benefit by anticipating and getting ahead of this all-important global shift.

Additionally, rising energy prices would challenge China’s investment and industry-led growth model, reinforcing the case for accelerated structural changes and rebalancing. High prices will increase pressures on China’s economy to diversify away from traditional investments and heavy industries, including iron, steel and cement production, which account for a disproportionate share of the country’s GDP but face diminishing returns and low productivity growth. The slowdown in the domestic real estate sector is already pointing in this direction. Higher energy prices could galvanize the shift toward an innovation- and services-based economic growth model.

Even as policymakers remain focused on mitigating the economic and social impact of recent sharp changes in relative prices, there are measures they can take today to prepare for the low carbon transition and reduce its costs. For example, rising energy prices will create incentives for more sustainable business models, but only if investors believe they are here to stay. This is why credible long-term guidance on the intended trajectory of carbon pricing and other policies to decarbonize China’s economy is so important. This would help investors anticipate future price increases and help bring clean energy investments forward without any immediate need to regulate or raise the price of carbon. The current period of high energy prices is the moment to provide such forward guidance, as market price incentives are already pointing in the right direction.

Fiscal policy can complement the role of price signals by supporting the necessary economic adjustment rather than trying to slow it down. The prospect of additional government stimulus to boost growth could provide the financing for a wave of green investments, including in the build-out and integration of more renewable energy capacity. In agriculture, rising fertilizer prices should provide incentives to reduce excessive usage. However, this shift would be thwarted if input-based subsidies remain in place. Instead, farmers could be compensated for higher input prices with subsidies that are tied to a shift toward resilient production methods. Field studies reveal that chemical fertilizers can be effectively substituted with animal manure, reducing agricultural greenhouse gas emissions at no cost to yields. To realize such a shift, greater investment in agricultural extension is required. 

Finally, rising energy and food prices would hurt the poor and more vulnerable households the most. But rather than providing subsidies across the board, a more robust and targeted social safety net could protect the vulnerable populations in urban and rural areas. Offering such targeted protection could ensure price signals are not diluted but the structural changes necessary for the transition to a greener and more innovative growth model don’t come at the expense of rising poverty and social inequality.

While adding headwinds to the near-term economic outlook, the current energy price shock reinforces the case for accelerating China’s energy transition. Policymakers should keep their eyes on the long-term target and use this opportunity to prepare the ground.

(first published on CGTN via World Bank)

Continue Reading

Publications

Latest

Energy News3 hours ago

Salt and a battery – smashing the limits of power storage

by Caleb Davies Thanks to the renewables’ boom, the limiting factor of the energy revolution is not power supply as much...

Russia8 hours ago

Biden forces Russia to retake all of Ukraine, and maybe even Lithuania

The Soviet Union had included what now are Armenia, Azerbaijan, Byelarus, Estonia, Georgia, Kazakhstan, Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan,...

East Asia10 hours ago

The Global-south Geopolitical and Geoeconomic Landscape and China’s Growing Influence

The importance of China’s CPEC project in the region and the obstacles it faces. The China-Pakistan Economic Corridor, or CPEC,...

Finance11 hours ago

5 Ways LinkedIn Works for Your Career

Any job seeker can reach their goal much faster with the use of job search engines and career platforms. You...

South Asia12 hours ago

Bulldozing Dissent in India

State brutality and hostility have emerged as the defining factors in BJP’s (Bharatiya Janata Party)  policy toward Indian Muslims. From...

Americas15 hours ago

America and the World: A Vital Connection

“The egocentric ideal of a future reserved for those who have managed to attain egoistically the extremity of `everyone for...

East Asia17 hours ago

Five key challenges awaiting Hong Kong’s incoming leader John Lee

Hong Kong’s leader-in-waiting John Lee has officially been appointed as the sixth-term chief executive of the Hong Kong Special Administrative...

Trending