Connect with us

Energy

What would it take to limit the global temperature rise to 1.5 °C?

Published

on

Authors: Laura Cozzi and Tim Gould*

Every year, the World Energy Outlook scenarios are updated to take into account the latest data and developments in policies, technology, costs and science. The major new scientific element for this year’s WEO was without doubt the Special Report on Global Warming of 1.5 °C, which the Intergovernmental Panel on Climate Change (IPCC) published in late 2018.

The IPCC report contains a wealth of new information about the risks of global warming, underlining that many of the physical impacts of climate change escalate in a non-linear fashion in relation to increases in global temperature. In other words, the impacts of 2.0 °C of warming are far worse than those of 1.5 °C.

The energy sector is at the front line of this issue, as it is by far the largest source of the emissions that cause global warming. As a result, this year’s WEO explores in detail what a pathway consistent with capping the temperature rise at 1.5 °C would mean for the energy sector. The discussion goes to the heart of energy’s dual role in modern civilisation: it’s essential to all the comforts of modern life – our homes, workplaces, leisure and our infrastructure – but the way it’s largely produced and consumed at the moment damages the environment on which we all depend.

Although the task of tackling climate change is huge, it is relatively simple to define. Global emissions need to peak as soon as possible and then fall rapidly until they hit zero – or, as the Paris Agreement puts it, until there is a “balance between anthropogenic emissions by sources and removals by sinks,” a situation sometimes called net-zero.

It’s not the only variable that counts, but the year at which global emissions reach net-zero is a critically important indicator for the prospects of stabilising global temperatures. The Paris Agreement specifies that this needs to happen “in the second half of this century.” The IPCC’s 1.5 °C report underlines that there is a major difference between reaching net-zero in 2100 versus 2050, and attention in many countries is increasingly focused on earlier dates.

After the UN Climate Summit in September, at least 65 jurisdictions, including the European Union, had set or were actively considering long-term net-zero carbon targets, including efforts to reach net-zero in 2050 or sooner. These economies together accounted for 21% of global gross domestic product and nearly 13% of energy-related CO2 emissions in 2018.

The Sustainable Development Scenario

The Sustainable Development Scenario relies on all of these net-zero targets being achieved on schedule and in full. The technology learning and policy momentum that they generate means that they become the leading edge of a much broader worldwide effort, bringing global energy-related CO2 emissions down sharply to less than 10 billion tonnes by 2050, on track for global net-zero by 2070.

There are no single or simple solutions to achieve this result. Rapid energy transitions of the sort envisaged by the Sustainable Development Scenario would require action across all sectors, utilising a wide range of energy technologies and policies. Energy efficiency improvements and massive investment in renewables – led by solar PV – take the lead, but there are also prominent roles in this scenario for carbon capture, utilisation and storage (CCUS), hydrogen, nuclear and others.

Among the range of technology solutions proposed for global emissions, there is one category that is used only very sparingly. These are the so-called negative emissions technologies, which actually remove CO2 from the atmosphere. Examples are bioenergy used in conjunction with CCUS (often called “BECCS”) and direct air capture. These technologies may yet play a critical role, but the level at which they are deployed in the Sustainable Development Scenario (0.25 billion tonnes in 2050) is lower than nearly all of the 1.5 °C scenarios assessed by the IPCC.

The Sustainable Development Scenario and the pursuit of 1.5 °C

If emissions were to stay flat, at the net-zero level, from 2070 until the end of the century, then the Sustainable Development Scenario is “likely” (with 66% probability) to limit the rise in the average global temperature to 1.8 °C, which is broadly equivalent to a 50% probability of a stabilisation at 1.65 °C.

If negative emissions technologies of the sort mentioned above could be deployed at scale, then emissions could actually go below zero – meaning that carbon dioxide is being withdrawn from the atmosphere on a net basis. This is a very common feature of the scenarios assessed by the IPCC in its special report: 88 out of the 90 scenarios in the IPCC’s report assume some level of net negative emissions.

A level of net negative emissions significantly smaller than that used in most scenarios assessed by the IPCC would give the Sustainable Development Scenario a 50% probability of limiting the rise in global temperatures to 1.5 °C.

It is technically conceivable that the world will reach a point where large quantities of CO2 are absorbed from the atmosphere, but there are uncertainties about what may be possible and about the likely impacts. As we have pointed out in previous WEOs, when designing deep decarbonisation scenarios, there are reasons to limit reliance on early-stage technologies for which future rates of deployment are highly uncertain. 

That is why the WEO has always emphasised the importance of early policy action: the pathway followed by the Sustainable Development Scenario relies on an immediate and rapid acceleration in energy transitions.

With the same precautionary reasoning in mind, the WEO-2019 also explores what it would take to achieve a 50% probability of stabilisation at 1.5 °C without net negative emissions.

A 1.5 °C scenario that does not rely on negative emissions technologies implies achieving global net-zero emissions around 2050. This in turn means a reduction in emissions of around 1.3 billion tonnes CO2 every year from 2018 onwards. That amount is roughly equivalent to the emissions from 15% of the world’s coal fleet or from 40% of today’s global passenger car fleet.

The year by which different economies would need to hit net-zero in such a scenario would vary, but the implication for advanced economies is that they would need to reach this point in the 2040s. The difference, compared with the Sustainable Development Scenario, would be much starker for many developing economies, which would all need to be at net-zero by 2050.

A zero-carbon power system would need to become a reality at least a few years before the entire economy reaches net-zero. This implies moving to a zero-emissions electricity system in the 2030s for advanced economies and around 2040 for developing economies.

Discussing target dates in this context is useful, but the really tough part is working out how to get there. That requires credible plans to actually reduce emissions quickly across the entire economy, pathways that work not just from the perspectives of technical feasibility or cost-efficiency (although these are important) but also take into account the need for social acceptance and buy-in.

The technical solutions in the power sector, at least, are well known, although the scale and speed at which clean energy technologies would need to be deployed – and existing facilities either repurposed, retrofitted with CCUS, or retired – is breath-taking. But any economy-wide net-zero target also needs to find answers quickly for sectors that are much harder to decarbonise, notably buildings, heavy industries like cement and steel, aviation and freight transport. Achieving such an outcome, without compromising the affordability or reliability of energy, represents an extraordinary challenge.

The energy sector is rightly at the heart of the climate debate, but it cannot deliver such a transformation on its own. Change on a massive scale would be necessary across a very broad front. As the IPCC 1.5 °C report says, this type of scenario would require rapid and far-reaching transitions not only in energy, but also in land, urban infrastructure – including transport and buildings – and industrial systems.

In its 2019 edition, the World Energy Outlook once again puts the spotlight on the huge disparity between the kind of transformation that is required and the pathway that the world is on, according to our assessment of today’s policy plans and ambitions and the rising energy needs of a growing global population and economy.

As the IEA’s Executive Director, Dr Fatih Birol, commented at the WEO launch this week, the world urgently needs to put a laser-like focus on bringing down global emissions.

“This calls for a grand coalition encompassing governments, investors, companies and everyone else who is committed to tackling climate change,” Dr Birol said. “Our Sustainable Development Scenario is tailor-made to help guide the members of such a coalition in their efforts to address the massive climate challenge that faces us all.”

*Tim Gould, Head of Division for Energy Supply Outlooks and Investment.

IEA

Continue Reading
Comments

Energy

Oil and the new world order: China, Iran and Eurasia

Published

on

The world oil market will undergo a fundamental change in the future. Choosing petrodollars or oil wars is no longer a question that can be answered. With the Strategic Agreement on the Comprehensive Economic and Security Partnership between China and Iran officially signed by the Foreign Ministers of both countries in Tehran on March 27, 2021, the petrodollar theorem is broken and the empire built by the US dollar is cracked.

This is because the petrodollar has not brought substantial economic development to the oil-producing countries in the Middle East during over half a century of linkage to the US dollar.

The Middle East countries generally have not their own industrial systems. The national economies are heavily dependent on oil exports and imports of cereals and industrial products. The national finances are driven by the US dollar and the financial system that follows it.

If the Middle East countries wanted to escape the control of the dollar, they should face the threat of war from the United States and its allies – things we have seen over and over again. Just think of Saddam Hussein being supported when he was fighting Iran and later being Public Enemy No. 1 when he started trading oil in euros.

The West has always wanted the Middle East to be an oil ‘sacred cow’ and has not enabled it to develop its own modern industrial system: the lack of progress in the Middle East was intended as long-term blackmail.

In the Western system of civilisation based on exchange of views and competition, the West is concerned that Iran and the entire Middle East may once again restore the former glory and hegemony of the Persian, Arab and Ottoman empires.

China is facing the exploitation of the global oil market and the threat of its supply disruption. Relying on industrial, financial, and military strength, Europe and the United States control the oil production capital, trade markets, dollar settlements, and global waterways that make up the entire petrodollar world order, differentiating China and the Middle East and dividing the world on the basis of the well-known considerations. You either choose the dollar or you choose war – and the dollar has long been suffering.

Just as in ancient times nomadic tribes blocked the Silk Road and monopolised trade between East and West, Europe and the United States are holding back and halting cooperation and development of the whole of Asia and the rest of the planet. Centuries ago, it was a prairie cavalry, bows, arrows and scimitars: today it is a navy ship and a financial system denominated in dollars.

Therefore, China and Iran, as well as the entire Middle East, are currently looking for ways to avoid middlemen and intermediaries and make the difference. If there is another strong power that can provide military security and at the same time offer sufficient funds and industrial products, the whole Middle East oil can be freed from the dominance of the dollar and can trade directly to meet demand, and even introduce new modern industrial systems.

Keeping oil away from the US dollar and wars and using oil for cooperation, mutual assistance and common development is the inner voice of the entire Middle East and developing countries: a power that together cannot be ignored in the world.

The former Soviet Union had hoped to use that power and strength to improve its system. However, it overemphasised its own geostrategic and paracolonial interests – turning itself into a social-imperialist superpower competing with the White House. Moreover, the USSR lacked a cooperative and shared mechanism to strengthen its alliances, and eventually its own cronies began to rebel as early as the 1960s.

More importantly – although the Soviet Union at the time could provide military security guarantees for allied countries – it was difficult for it to provide economic guarantees and markets, although the Soviet Union itself was a major oil exporter. The natural competitive relationship between the Soviet Union and the Middle East, as well as the Soviet Union’s weak industrial capacity, eventually led to the disintegration of the whole system, starting with the defection of Sadat’s Egypt in 1972. Hence the world reverted to the unipolarised dollar governance once the Soviet katekon collapsed nineteen years later.

With the development and rise of its economy, however, now China has also begun to enter the world scene and needs to establish its own new world order, after being treated as a trading post by Britain in the 19th century, later divided into zones of influence by the West and Japan, and then quarantined by the United States after the Second World War.

Unlike the US and Soviet world order, China’s proposal is not a paracolonial project based on its own national interests, nor is it an old-fashioned “African globalisation” plan based on multinationals, and it is certainly not an ideological export.

For years, there has been talk of Socialism with Chinese characteristics and certainly not of attempts to impose China’s Marxism on the rest of the world, as was the case with Russia. China, instead, wishes to have a new international economic order characterised by cooperation, mutual assistance and common development.

Unlike the Western civilisation based on rivalry and competition, the Eastern civilisation, which pays more attention to harmony without differences and to coordinated development, is trying to establish a new world economic order with a completely different model from those that wrote history in blood.

Reverting to the previous treaty, between the US dollar and the war, China has offered Iran and even the world a third choice. China seems increasingly willing to exist as a service provider. This seems to be more useful for China, first of all to solve its own problems and not to get involved in endless international disputes.

It can thus be more accepted by all countries around the world and unite more States to break the joint encirclement of the “democratic” and liberal imperialism of Europe and the United States.

Consequently, China and Iran – whose origins date back almost to the same period – met at a critical moment in history. According to the Strategic Agreement on Comprehensive Economic and Security Partnership between China and Iran, China will invest up to 400 billion dollars in dozens of oil fields in Iran over the next 25 years, as well as in banking, telecommunications, ports, railways, healthcare, 5G networks, GPS, etc.

China will help Iran build the entire modern industrial system. At the same time, it will receive a heavily discounted and long-term stable supply of Iranian oil. The Sino-Iranian partnership will lay the foundations for a proposed new world order, with great respect for Eastern values, not based on some failed, decadent and increasingly radicalising principles.

Faced with the value restraint and the pressure of sanctions from the United States and Europe, China is seeking to unite the European third Rome, Indo-European Iran, the second Rome and the five Central Asian countries to create a powerful geoeconomic counterpart in the hinterland of Eurasia.

Continue Reading

Energy

The stages and choices of energy production from hydrogen

Published

on

There are three main ways to use hydrogen energy:

1) internal combustion;

2) conversion to electricity using a fuel cell;

3) nuclear fusion.

The basic principle of a hydrogen internal combustion engine is the same as that of a gasoline or diesel internal combustion engine. The hydrogen internal combustion engine is a slightly modified version of the traditional gasoline internal combustion engine. Hydrogen internal combustion burns hydrogen directly without using other fuels or producing exhaust water vapour.

Hydrogen internal combustion engines do not require any expensive special environment or catalysts to fully do the job – hence there are no problems of excessive costs. Many successfully developed hydrogen internal combustion engines are hybrid, meaning they can use liquid hydrogen or gasoline as fuel.

The hydrogen internal combustion engine thus becomes a good transition product. For example, if you cannot reach your destination after refuelling, but you find a hydrogen refuelling station, you can use hydrogen as fuel. Or you can use liquid hydrogen first and then a regular refuelling station. Therefore, people will not be afraid of using hydrogen-powered vehicles when hydrogen refuelling stations are not yet widespread.

The hydrogen internal combustion engine has a small ignition energy; it is easy to achieve combustion – hence better fuel saving can be achieved under wider working conditions.

The application of hydrogen energy is mainly achieved through fuel cells. The safest and most efficient way to use it is to convert hydrogen energy into electricity through such cells.

The basic principle of hydrogen fuel cell power generation is the reverse reaction of electrolysis of water, hydrogen and oxygen supplied to the cathode and anode, respectively. The hydrogen spreading – after the electrolyte reaction – makes the emitted electrons reach the anode through the cathode by means of an external load.

The main difference between the hydrogen fuel cell and the ordinary battery is that the latter is an energy storage device that stores electrical energy and releases it when needed, while the hydrogen fuel cell is strictly a power generation device, like a power plant.

The same as an electrochemical power generation device that directly converts chemical energy into electrical energy. The use of hydrogen fuel cell to generate electricity, directly converts the combustion chemical energy into electrical energy without combustion.

The energy conversion rate can reach 60% to 80% and has a low pollution rate. The device can be large or small, and it is very flexible. Basically, hydrogen combustion batteries work differently from internal combustion engines: hydrogen combustion batteries generate electricity through chemical reactions to propel cars, while internal combustion engines use heat to drive cars.

Because the fuel cell vehicle does not entail combustion in the process, there is no mechanical loss or corrosion. The electricity generated by the hydrogen combustion battery can be used directly to drive the four wheels of the vehicle, thus leaving out the mechanical transmission device.

The countries that are developing research are aware that the hydrogen combustion engine battery will put an end to pollution. Technology research and development have already successfully produced hydrogen cell vehicles: the cutting-edge car-prucing industries include GM, Ford, Toyota, Mercedes-Benz, BMW and other major international companies.

In the case of nuclear fusion, the combination of hydrogen nuclei (deuterium and tritium) into heavier nuclei (helium) releases huge amounts of energy.

Thermonuclear reactions, or radical changes in atomic nuclei, are currently very promising new energy sources. The hydrogen nuclei involved in the nuclear reaction, such as hydrogen, deuterium, fluorine, lithium, iridium (obtained particularly from meteorites fallen on our planet), etc., obtain the necessary kinetic energy from thermal motion and cause the fusion reaction.

The thermonuclear reaction itself behind the hydrogen bomb explosion, which can produce a large amount of heat in an instant, cannot yet be used for peaceful purposes. Under specific conditions, however, the thermonuclear reaction can achieve a controlled thermonuclear reaction. This is an important aspect for experimental research. The controlled thermonuclear reaction is based on the fusion reactor. Once a fusion reactor is successful, it can provide mankind with the cleanest and most inexhaustible source of energy.

The feasibility of a larger controlled nuclear fusion reactor is tokamak. Tokamak is a toroidal-shaped device that uses a powerful magnetic field to confine plasma. Tokamak is one of several types of magnetic confinement devices developed to produce controlled thermonuclear fusion energy. As of 2021, it is the leading candidate for a fusion reactor.

The name tokamak comes from Russian (toroidal’naja kamera s magnitnymi katuškami: toroidal chamber with magnetic coils). Its magnetic configuration is the result of research conducted in 1950 by Soviet scientists Andrei Dmitrievič Sakharov (1921-1989) and Igor’ Evgen’evič Tamm (1895-1971), although the name dates back more precisely to 1957.

At the centre of tokamak there is a ring-shaped vacuum chamber with coils wound outside. When energized, a huge spiral magnetic field is generated inside the tokamak, which heats the plasma inside to a very high temperature, which achieves the purpose of nuclear fusion.

Energy, resources and environmental problems urgently need hydrogen energy to solve the environmental crisis, but the preparation of hydrogen energy is not yet mature, and most of the research on hydrogen storage materials is still in the exploratory laboratory stage. Hydrogen energy production should also focus on the “biological” production of hydrogen.

Other methods of hydrogen production are unsustainable and do not meet scientific development requirements. Within biological production, microbial production requires an organic combination of genetic engineering and chemical engineering so that existing technology can be fully used to develop hydrogen-producing organisms that meet requirements as soon as possible. Hydrogen production from biomass requires continuous improvement and a vigorous promotion of technology. It is a difficult process.

Hydrogen storage focused on the discovery of new aspects of materials or their preparation is not yet at large-scale industrial level. Considering different hydrogen storage mechanisms, and the material to be used, also needs further study.

Furthermore, each hydrogen storage material has its own advantages and disadvantages, and most storage material properties have the characteristics that relate to adductivity and properties of a single, more commonly known material.

It is therefore believed that efforts should be focused on the development of a composite hydrogen storage material, which integrates the storage advantages of multiple individual materials, along the lines of greater future efforts.

Continue Reading

Energy

The advantages of hydrogen and Israel’s warnings

Published

on

Hydrogen is the most common element in nature. It is estimated to make up 75% of the mass of the universe. Except for that contained in air, it is primarily stored in water in the form of a compound, and water is the most widely distributed substance on earth.

Hydrogen has the best thermal conductivity of all gases – i.e. ten times higher than most of them – and it is therefore an excellent heat transfer carrier in the energy industry.

Hydrogen has good combustion performance, rapid ignition, and has a wide fuel range when mixed with air. It has a high ignition point and rapid combustion rate.

Except for nuclear fuels, the calorific value of hydrogen is the highest among all fossil and chemical fuels, as well as biofuels, reaching 142.35 kJ/kg. The calorie per kilogram of hydrogen burned is about three times that of gasoline and 3.9 times that of alcohol, as well as 4.5 times that of coke.

Hydrogen has the lightest weight of all elements. It can appear as gas, liquid, or solid metal hydride, which can adapt to different storage and transport needs and to various application environments.

Burning hydrogen is cleaner than other fuels –  besides generating small amounts of water – and does not produce hydrogen azide as carbon monoxide, carbon dioxide (harmful to the environment), hydrocarbons, lead compounds and dust particles, etc. A small amount of hydrogen nitride will not pollute the environment after proper treatment, and the water produced by combustion can continue to produce hydrogen and be reused repeatedly.

Extensive use practices show that hydrogen has a record of safe use. There were 145 hydrogen-related accidents in the United States between 1967 and 1977, all of which occurred in petroleum refining, the chlor-alkali industry, or nuclear power plants, and did not really involve energy applications.

Experience in the use of hydrogen shows that common hydrogen accidents can be summarized as follows: undetected leaks; safety valve failure; emptying system failure; broken pipes, tubes or containers; property damage; poor replacement; air or oxygen and other impurities left in the system; too high hydrogen discharge rate; possible damage of pipe and tube joints or bellows; accidents or tipping possibly occurring during the hydrogen transmission process.

These accidents require two additional conditions to cause a fire: one is the source of the fire and the other is the fact that the mixture of hydrogen and air or oxygen must be within the limits of the possibility of fires or violent earthquakes in the local area.

Under these two conditions, an accident cannot be caused if proper safety measures are established. In fact, with rigorous management and careful implementation of operating procedures, most accidents do not theoretically occur.

The development of hydrogen energy is triggering a profound energy revolution and could become the main source of energy in the 21st century.

The United States, Europe, Japan, and other developed countries have formulated long-term hydrogen energy development strategies from the perspective of national sustainable development and security strategies.

Israel, however, makes warning and calls for caution.

While the use of hydrogen allows for the widespread penetration of renewable energy, particularly solar and wind energy – which, due to storage difficulties, are less available than demand – Israeli experts say that, despite its many advantages, there are also disadvantages and barriers to integrating green hydrogen into industry, including high production costs and high upfront investment in infrastructure.

According to the Samuel Neaman Institute’s Energy Forum report (April 11, 2021; authors Professors Gershon Grossman and Naama Shapira), Israel is 7-10 years behind the world in producing energy from clean hydrogen.

Prof. Gideon Friedman, actingchief scientist and Director of Research and Development at the Ministry of Energy, explains why: “Israel has a small industry that is responsible for only 10% of greenhouse gas emissions – unlike the world where they are usually 20% – and therefore the problems of emissions in industry are a little less acute in the country.”

At a forum held prior to the report’s presentation, senior officials and energy experts highlighted the problematic nature of integrating clean hydrogen into industry in Israel.

Dr. Yossi Shavit, Head of the cyber unit in industry at the Ministry of Environmental Protection, outlined the risks inherent in hydrogen production, maintenance and transportation, including the fact that it is a colourless and odourless gas that makes it difficult to detect a leak. According to Dr. Shavit, hydrogen is a hazardous substance that has even been defined as such in a new regulation on cyber issues published in 2020.

Dr. Shlomo Wald, former chief scientist at the Ministry of Infrastructure, argued that in the future hydrogen would be used mainly for transportation, along with electricity.

Prof. Lior Elbaz of Bar-Ilan University said that one of the most important things is the lack of laws: “There is no specific regulation for hydrogen in Israel, but it is considered a dangerous substance. In order for hydrogen to be used for storage and transportation, there needs to be a serious set of laws that constitute a bottleneck in our learning curve.” “Israel has something to offer in innovation in the field, but government support will still be needed in this regard – as done in all countries – and approximately a trillion dollars in the field of hydrogen is expected to be invested in the next decade.”

Although the discussion was mainly about Israel’s delay in integrating clean hydrogen into the industry, it has emerged that Sonol (Israel’s fuel supplier ranking third in the country’s gas station chain) is leading a project, together with the Ministry of Transport, to establish Israel’s first hydrogen refuelling station. “We believe there will be hydrogen transportation in Israel for trucks and buses,” said Dr. Amichai Baram, Vice President of operations at Sonol. “Hydrogen-powered vehicles for the country – albeit not really cheap in the initial phase – and regulations promoted in the field, both for gas stations and vehicles.”

Renewables account for only 6% of Israel’s energy sources and, according to the latest plans published by the Ministry of Energy and adopted by the government, the target for 2030 is 30%.

This is an ambitious goal compared to reality, and also far from the goal of the rest of the countries in the world that aim at energy reset by 2050.

The authors of the aforementioned report emphasize that fully using the clean hydrogen potential is key to achieving a higher growth target for Israel.

According to recommendations, the State should critically examine the issue in accordance with Israel’s unique conditions and formulate a strategy for the optimal integration of hydrogen into the energy economy.

Furthermore, it must support implementation, both through appropriate regulations and through the promotion of cooperation with other countries and global companies, as well as through investment in infrastructure, and in research and development, industry and in collaboration with the academic world.

There are countries in Europe or the Middle East that have already started green energy production projects, and finally it was recommended to work to develop Israeli innovations in the field, in collaboration with the Innovation Authority and the Ministry of Energy.

Continue Reading

Publications

Latest

Trending