Connect with us

Energy

Helping a warming world to keep cool

Published

on

Authors: Chiara Delmastro and John Dulac

Heatwaves this summer that have left many Europeans sweltering highlight the growing demand for air conditioning in a warming world. Access to cooling services is becoming a major issue, especially in developing countries where owning an air conditioner is still uncommon.   

Nearly 2.8 billion people today live in hot countries, where the average daily temperature is greater than 25°C. Less than 10% of them own an air conditioner, compared with ownership of more than 90% in countries like Japan and the United States. And while as many as 2.5 billion people in hot countries are projected to have an air conditioner by 2050, another 1.9 billion could still be going without.

Recent IEA analysis examines the amount of energy that would be needed to provide access to affordable and sustainable cooling solutions for all. We consider in our Cooling for All scenario the challenges and implications of achieving access to air conditioning for more than 90% of people living in hot climates by 2100. That comes in the context of the much bigger challenge of first providing reliable access to electricity in developing countries.

That fundamental issue informs the IEA’s Sustainable Development Scenario, which charts a path to universal electricity access by 2030 and other sustainable energy goals. In that scenario, more than one-third of the 900 million people currently living in rural areas without electricity gain access through off-grid solutions, and another 400 million gain access via mini-grids.

Our Cooling for All analysis considers two possible approaches to providing cooling services for areas in which off-grid technology solutions are likely to be used for electricity access. Under the first approach, people in hot countries gain access to cooling services using a diesel generator distributed to individual households with one small air-conditioning unit to cool around 20 square metres of space. The second approach uses a solar photovoltaic (PV) unit with battery storage in the same situation.

In both cases, access to air conditioning is assumed to increase significantly over the next 30 years, with as much as 75% of the total population living in hot countries potentially having an air conditioner by 2050. This means that an additional 720 million people, or equivalently 175 million households, beyond those already expected to purchase one would have access to an air conditioner by 2050. This grows to as much as 1.6 billion people by 2100 – giving access to cooling to the equivalent of the current populations of India and Brazil combined.

Achieving this would come with significant challenges. Providing access to an air conditioner is only one element of a Cooling for All scenario. How often households use the air conditioner and how affordable it is are also important factors to consider, particularly as cooling is only one piece of the puzzle of improving access to modern energy services in many developing countries.

Other energy needs – such as clean cooking, lighting and refrigeration – are also critical parts of the energy access story. Even the use of just a small air conditioner for a few hours every day would represent a significant share of a household’s electricity demand.

Air conditioning powered by a diesel generator

Meeting the energy demands of the 175 million households gaining access to an AC by 2050 in the Cooling for All scenario would require roughly 105 terawatt-hours (TWh) of electricity in 2050. Around 45% of that would be consumed by the AC units, piling onto the yearly diesel costs for generator operations. Given that households with limited energy access typically have low disposable incomes, this means that additional cooling services would likely represent an important opportunity cost, even if the households were given access to a generator and small AC unit.

This challenge underlines the importance of super-efficient ACs and appliances for off-grid applications in developing countries. High energy performance of ACs would drastically reduce the necessary diesel consumption for electricity generation. For instance, if the average performance of the ACs distributed to households were to improve by 50% by 2050, the yearly running cost for the diesel generator for three hours of daily cooling would drop by more than a third.

These cost estimates could vary substantially when taking into account the differences in diesel prices based on a household’s location. For example, transportation costs are higher for difficult-to-reach areas. The risk is that some households may not use the air conditioners because of operational costs, defeating the ambitions of affordable access to cooling even with energy-efficient air conditioning. Other factors, such as local air pollution created by diesel fuel consumption, could also affect the use of air conditioners.

Air conditioning powered by a solar panel and battery

Improvements in solar technologies, including lower costs, are offering new opportunities to make significant progress on electricity access in developing countries. Solar PV packs are a growing market for providing off-grid access. Expanding that access to include cooling services via an AC would require greater electricity generation and battery storage capacity. But it could potentially offer an affordable form of access to cooling for populations in hot countries.

Initial analysis suggests that a large single solar module with a maximum capacity of 250 W and a lithium-ion battery would not be sufficient to cover the entire electricity demand of a typical household based on an air conditioner performance of less than 3.5 EER. But on a sunny day, it could cover around 80% of the demand.

As with diesel generation, this underscores the critical need for high-performance AC equipment to reduce the net impact of electricity demand from household AC use. This case also shows the need to increase the net solar module capacity to meet overall electricity needs.

For example, a more efficient air conditioner would enable to the solar module to cover nearly 95% of the electricity demand on a good day. But the solar module would probably still have difficulty meeting the household’s energy demands over the course of the entire day, particularly during peak hours in the evening.

One solution to this challenge could be to provide greater solar and battery-storage capacity or, for example, to use more efficient cold storage, such as chilled water or ice making (which, however, could only be used for cooling services and not the additional electricity loads).

Hybrid systems that supplement the solar PV generation with some diesel capacity are already common in some developing countries today and could also be a sensible solution for meeting household electricity demands more reliably. The operational costs of a hybrid system would be much more affordable than a diesel generator.

Low-tech solutions

There are numerous additional measures that should be considered when addressing access to cooling, such as basic building design.

Low-tech and generally low-cost building measures, including passive cooling solutions, can drastically improve thermal comfort in buildings and therefore reduce or eliminate the need for cooling that consumes energy. This includes commonly used solutions such as overhangs, shutters and cool- or light-coloured roofs. Additional low-tech solutions – such as rammed-earth wall construction, green roofs and urban vegetation – can also improve thermal comfort in buildings.

Alternative technologies to air conditioning – such as high-efficiency fans, evaporative coolers (in dry climates) and dehumidifiers (in humid climates) – could help to improve access to thermal comfort in the evening, when people return home, while using far less electricity than an air conditioner. These measures could also fit well with current solar PV module deployment in many countries.

At the same time, air conditioners may make a lot of sense for applications outside the home. For instance, some of the hottest parts of the day in many countries are in the mid- to late-afternoon when people are often outside their homes in places like schools, hospitals and health centres, public buildings and community centres. Access to air conditioning in those facilities may make sense in terms of energy emissions and affordability, as well as offering other potential benefits such as improved health and greater productivity.

*John Dulac, Energy Technology Policy Analyst

IEA

Continue Reading
Comments

Energy

Renewable Energy is a Brewing Geopolitical Catastrophe

Todd Royal

Published

on

According to the International Energy Agency (IEA) “the world will spend $US 162 billion subsidizing renewable energy (mainly solar and wind.” This money could be spent on the over 2 billion people globally without electricity – over 600 million in just Africa – that will be used to prop-up chaotically, intermittent and grossly inefficient renewables. Every nation-state, country, or individual state that uses renewables on a wide-scale basis realizes higher electrical prices and emissions for the simple reason they need constant fossil fuel or nuclear energy backup.

Consider Australia, which has “substantial energy reserves.” Green state governments have legislated keeping their oil, natural gas, and coal in the ground, and this means the Australian Defense Minister, Linda Reynolds has been seeking U.S. help for their dangerously low national fuel supplies. Australia – in a perilous, geopolitical move – is likely sending warships to the Strait of Hormuz to protect the oil-rich Persian Gulf. Australia should have never been in this predicament if it weren’t for overreliance on renewables, and energy battery storage systems that cannot meet Australia’s supply of energy needed causing substantial capacity issues.

Now realize the entire world going down this path except China, Russia, Iran, and North Korea, since the Paris Climate Agreement (PCA) if fully implemented:

“Will cost the world from $US1 trillion to $US2 trillion a year by 2030, neither of these hugely expensive policies will have any measureable impact on temperatures by the end of the century.”

The UN Framework Convention on Climate Change has also debunked the Paris Climate Agreement by estimating: “

Even if every country makes every single carbon cut suggested in the Paris treaty to the fullest extent, CO2 emissions would be cut by only 1 per cent of what would be needed to keep temperature rises under 2C.”

To reiterate the complete-nothingness of energy policy options coming from green-aligned legislators – the much-touted U.S. Green New Deal – from Congresswoman Alexandria Ocasio-Cortez, D-N.Y., and Senator Ed Markey, D-Mass., “would have no meaningful impact on global temperatures.”If the U.S. entirely cut out every ounce of carbon dioxide emissions (CO2), “100 percent it would not make a difference in abating global warming.”

Every green policy being considered and utilized by governments globally – particularly, in the U.S. and European Union (EU) – would:

“Fundamentally change how people produce and consume energy, harvest crops, raise livestock, build homes, drive cars, travel long distance, and manufacture good.”

The entire green movement believes harnessing the sun and wind is the answer when nothing could be farther from the truth. Besides zero-carbon nuclear power plants, there is new technology from net-zero natural gas-fired power plants currently being “demonstrated,” or natural gas-fired power plants are the best option, because there use allowed the U.S. to be the only industrialized nation to meet the Kyoto Protocol standard.

The other low cost, simple option to reduce emissions is planting trees. Instead, the west continues committing a suicidal, economic death spiral that will allow their enemies to pick up the pieces in their race toward authoritarian, governmental control.

If the U.S. cannot ensure the liberal-led order in place since World War II (WWII) over keeping fossil fuels in the ground and nuclear energy on the shelf then who will use realist balancing against China, Russia, Iran, and North Korea? Not Australia – realistically, and militarily, the Australians do not have the blue water navy capabilities, or force projection to deter the Iranians in the Middle East. Only the Americans backed by NATO do at this time.

The premier environmental organization – the United Nations (UN) Intergovernmental Panel on Climate Change said: “if we did absolutely nothing to respond to global warming, the total impact by the 2070s will be the equivalent to a 0.2 per cent to 2 percent loss in average income.” Then a global poll of 10 million people by the UN “found that climate change was the lowest priority of all 16 challenges considered.” Climate change and renewables are interwoven.

Vaclav Smil, author of the premier energy book, Energy and Civilization, endorsed by Bill Gates opined about renewables by saying: “The great hope for a quick and sweeping transition to renewable energy is wishful thinking.” Al Gore’s chief scientific advisor, Jim Hansen also opined the same sentiments:

“Suggesting that renewables will let us phase rapidly off fossil fuels in the United States, China, India or the world as a whole is almost the equivalent of believing in the Easter Bunny and Tooth Fairy.”

Where this is geopolitically concerning comes to India. In coming years they will have a larger population than China, and they need more, not less fossil fuels for prosperity and development. According to the UN 2019 Multidimensional Poverty Index, “India lifted 271 million people out of poverty in a decade,” by building nuclear power plants, coal-fired power plants, and using fossil fuels in way they never have in their history.

If India went the way of Australia, which is currently experiencing electrical blackouts from wind turbine farms, and political instability, then the Kashmir crisis could be enflamed further, and China would move to conquer or crush India in every way possible. Deterrence that comes from fossil fuels and nuclear that fuel militaries and nuclear arsenals will continue keeping the peace that has led to unprecedented global prosperity and poverty reduction. Currently, renewables cannot accomplish those goals.

What geopolitics understands is the reality that China, Russia, Iran, and North Korea are presenting to world peace. Renewables are on the precipice of causing a geopolitical disaster when policymakers believe this will solve world energy problems that actually don’t exist. Renewables need to be weaned off subsides and an all-of-the-above approach is what will eventually allow solar panels and wind turbines to displace fossil fuels. But the problem of what to do with the over 6,000 products that come from a barrel of crude oil will need to be solved – including every part of the solar panel and wind turbine supply chain emanates from crude oil. Or else, the world is walking into a geopolitical disaster of their own making believing renewables will displace fossil fuels or nuclear energy.

Continue Reading

Energy

Three priorities for energy technology innovation partnerships

Published

on

Authors: Jean-Baptiste Le Marois and Claire Hilton*

Governments around the world are setting increasingly ambitious climate targets while at the same time pursuing challenging national policy goals such as affordable and sustainable energy for all. In many cases, achieving these goals will require technologies that either do not yet exist, or are not yet ready for market, meaning innovation will be critical. Technology innovation can be a game changer across all sectors, including power generation, industry, buildings and transport.

Yet it is unlikely that any single country will be able to solve all of its energy and climate problems alone. International collaboration can help countries accelerate innovation processes by identifying common priorities and challenges, tackling pressing innovation gaps, sharing best practices to improve performance, reducing costs and reaching broad deployment of clean energy technologies. Given this massive potential, the fundamental question is not if countries should collaborate, but rather who should collaborate and how they can do so efficiently.

As part of the IEA’s efforts to support global energy transitions, we are working to help governments identify relevant collaborative partnership opportunities, engage with international partners and optimise possible synergies among existing initiatives. Our recent Energy Technology Innovation Partnerships report is a key step along this path, providing an overview of the global landscape of multilateral efforts relevant to energy technology innovation, and examining four selected collaborative partnerships. There are three key takeaways that highlight the challenges and potential of these efforts.

Enhancing collaboration among existing multilateral initiatives

International collaboration in the field of energy technology innovation is not new – many countries already participate in numerous multilateral initiatives, some of which have been active for decades, such as The Technology Collaboration Programme by IEA (TCP) which was established in 1974. Today, 38 independent Technology Collaborations operate under the TCP, made up of over 6,000 experts from nearly 300 public and private organisations based in 55 countries, who work together on topics ranging from renewable energy and smart grids to hydrogen and nuclear fusion.

Governments have launched several new partnerships over the last decade, such as the Clean Energy Ministerial (CEM) in 2009 and Mission Innovation (MI) in 2015, which both aim to accelerate international efforts to address climate change. The 27 members of CEM collaborate to promote the deployment of clean energy technologies through over 20 initiatives and campaigns. Similarly, MI counts 25 members who have pledged to double clean energy RD&D spending and co-lead activities under eight key innovation challenges, such as clean energy materials and affordable heating and cooling in buildings. Participation in Technology Collaborations, MI and CEM present a great degree of overlap, as countries tend to join the full suite of collaborative partnerships. In fact, 13 countries and the European Commission participate each in more than 20 Technology Collaborations, CEM and MI: the United States, Japan, Korea, Canada, China, Germany, Australia, France, Sweden, Finland, Italy, Norway and the United Kingdom. This “core” group of decision makers is in a strong position to pursue further synergies across partnerships.

There are also many relevant regional partnerships that are making valuable contributions to energy technology innovation, such as the European Technology and Innovation Platforms (EU-ETIPs), which bring together EU governments and companies to identify research priorities and relevant energy innovation strategies.

Other examples of regional partnerships include mechanisms under the African Union and other African regional partnerships; the Asia-Pacific Economic Cooperation and the Association of Southeast Asian Nations; various partnerships in the Middle East; and the Latin American Energy Organisation and the Organisation of American States. Many other partnerships focus on specific themes of interest, such as the Biofuture Platform, a group of 20 countries seeking to advance sustainable bioenergy and facilitated by the IEA.

As the global landscape of multilateral activities relevant to energy technology innovation becomes increasingly diverse and complex, it can be challenging for policy makers to identify which partnerships to engage with. In fact, despite the central role of innovation in energy transitions and the potential of international collaboration, there is limited information available on the full landscape of multilateral initiatives and how they interact.

Examining a selection of collaborative partnerships reveals that numerous initiatives focus on the same technology areas. Our own examination shows that in eight technology areas, at least three of the four selected partnerships have active initiatives: heating and cooling; carbon capture, utilisation and storage (CCUS); nuclear; bioenergy and biofuels; wind; solar; smart grids; and hydrogen. The overlap becomes even more apparent when including other global, regional and thematic partnerships: for example, Technology Collaborations, MI, EU-ETIPs, the Biofuture Platform and the Global Bioenergy Partnership all focus on bioenergy. More generally, recent trends suggest that partnerships are increasingly centring on low-carbon energy sources and cross-cutting themes including systems integration.

Focusing on the same technologies across different partnerships may induce risks of duplication, thereby diluting policy maker attention and creating fundraising or political support challenges. That said, in some instances, activities may well address different aspects of the same technology area, justifying the overlap. Yet even in those cases, stakeholders have acknowledged that the perception of duplication may be enough to trigger a degree of competition between multilateral efforts. Policy makers would therefore benefit from identifying possible synergies between mechanisms to avoid replication of efforts while at the same time maximising complementarity.

Enhanced cross-mechanism collaboration may increase the impact of ongoing activities. For instance, co-locating stakeholder dialogue, events and roundtables may mobilise more actors and bring varied and valuable perspectives, attract attention from policy makers and enhance networking opportunities. Co-branding technology policy and market analyses may reveal new findings thanks to the combined experience, knowledge and networks of the initiatives involved. Collaboration between early-stage activities executing RD&D and initiatives providing competitive funding or grant opportunities may facilitate the development of energy technologies and their demonstration in real-life conditions or in strategic markets.

However, innovation stakeholders have also reported challenges in engaging with other collaborative mechanisms, in part because of a lack of systematic co-ordination processes. As a result, the number of interactions between existing partnerships, whether at the political or working level, remains low relative to the number of ongoing activities.

Despite these challenges, there are some initiatives that are already effectively collaborating across partnerships. For example, last year the co-leads of collaborative activities on smart grids under the International Smart Grid Action Network (ISGAN) (both a TCP and a CEM Initiative), identified a strategic opportunity to work more closely with the relevant Innovation Challenge under MI and formalised this co-operation.

Focus on emerging markets

Participation in collaborative partnerships continues to grow and diversify every year. IEA Members and Association countries currently account for the broadest participation in Technology Collaborations, CEM and MI, as illustrated by the “core” group of top-collaborators mentioned above.

While a strong central core of support is invaluable, an important trend for global innovation ecosystems is the increasing participation of emerging economies, such as China (currently a member of 23 Technology Collaborations), India (11), Mexico (10), South Africa (8) and Brazil (5).

Emerging market countries also tend to participate in regional partnerships, which allow governments that are not necessarily members of global efforts to benefit from international co-operation. The transition from regional to global collaboration is an encouraging trend for key emerging market countries, with which the IEA seeks to deepen engagement as part of the Clean Energy Transitions Programme (CETP).

Partnerships have made it clear that emerging economies are a top priority. As part of a survey conducted in 2019 by the IEA Secretariat, India was identified as a key prospective partner by 14 Technology Collaborations; Brazil by 12; Chile and China by 8; Mexico and Indonesia by 7. If prospective membership materialised, China would consolidate its high participation by holding membership in over 30 Technology Collaborations; India would join the “core” group of top-collaborative countries; and both Mexico and Brazil would be involved in over 15 Technology Collaborations.

Strengthening public-private cooperation

In addition to public agencies, private-sector actors play a critical role in RD&D and in ensuring key technologies reach markets. Examining both public and private contributions can help governments better understand the broader innovation ecosystem, engage with companies to leverage corporate expertise, influence and capital; and strategically allocate public funds in those energy sectors that remain underfunded or face financing access challenges.

While there is substantial interest from collaborative partnerships to deepen engagement with private-sector actors, this engagement is, at least for now, relatively uncommon. Among the four partnerships analysed in the report, only EU-ETIPs are co-led by industry stakeholders while some 80% of participants in Technology Collaborations are public bodies. For now, membership in MI and CEM is restricted to national governments, although engagement of private sector is actively sought and governments may designate in-country private sector experts to represent national interests in certain initiatives.

Different factors may be preventing companies from seeking engagement with government-led multilateral initiatives, including a lack of awareness of such programmes, differing working cultures between public and private actors, diverging priorities and little incentive to share information, and burdensome administrative procedures. On the other side, some stakeholders within collaborative partnerships remain reluctant to engage with industry, fearing the influence of corporate interests on their strategic decisions, work programmes or outputs. These reasonable concerns need to be overcome for effective public-private co-operation to take place.

Thankfully, we are seeing some positive developments. For instance, over 100 private-sector companies are now participating in the technical work of CEM activities, resulting from both CEM stakeholders reaching out to companies, and vice versa. In collaboration with the IEA, CEM also leads an Investment and Finance Initiative (CEM-IF) to help policy makers mobilise investments and financing, particularly from private sources, for clean energy deployment. Policy makers, collaborative partnerships and energy innovation stakeholders may benefit from further research on private-sector participation, building on these encouraging cases, to find ways to best leverage corporate capabilities.

Ways forward

As we continue to enhance our efforts related to technology innovation to support global energy transitions, the IEA encourages broad international collaboration to tackle pressing innovation gaps, share best practices and accelerate the deployment of clean energy technologies. Enhancing collaboration between existing initiatives, engaging with emerging markets and leveraging corporate capabilities, are three areas of promising focus for policy makers looking forward.

*Claire Hilton, Energy Partnerships Analyst.

IEA

Continue Reading

Energy

Iran’s huge energy subsidies: supporting or battering the economy?

Published

on

In one of its latest reports dubbed “World Energy Outlook 2018”, the International Energy Agency (IEA) has allocated a section to fossil-fuel subsidies. The IEA has gathered the information regarding different countries’ fossil-fuel consumption subsidies and presented it in a chart on top of which the name of “Iran” catches the eye.

Based on the report, in 2018 with $69 billion of subsidies allocated for various types of energy consumption including oil, natural gas and electricity, Iran holds the first place among the world’s top countries in terms of the amount of subsidies which is allocated to energy consumption.

According to the IEA report, in the mentioned year, Iran has allocated $26.6 billion, $16.6 billion and $26 billion of subsidies for oil, electricity and gas respectively.

Based on the data, the total amount of allocated subsidies equals 15 percent of the country’s total GDP.

But what this information means? How one should interpret seeing the name of “Iran” on top of a chart for countries with most energy consumption subsidies?

Three main purposes of energy subsidies

Energy subsidies for long have been used by governments all around the world for pursuing certain political, economic, social, or environmental agendas. In different countries, energy subsidies are provided in different forms and modalities with a direct or indirect outcome on energy production costs and/or final prices.

Iran, as one of the world’s top energy-rich countries, for long has been offering significant amounts of energy subsidies to (according to the government claims) reach three main targets:

1- To support the less privileged population of the society

2- To create and support job opportunities across the county

3- To support domestic production

Considering these major purposes assumed for allocating gigantic amounts of energy subsidies in Iran, the question is to what extend these goals have been reached so far?

The poor, the rich or the air pollution?

Regarding the support for the less-privileged classes of the society, a look at the gasoline subsidies which the Iranian government has been offering for all people, can show the extent of this approach’s inefficiency. 

On one hand, many energy experts and scholars in the country believe that allocating great amounts of subsidies for gasoline is not in fact supporting the poor but it is more lifting the rich. They argue that most of the lower class population in the society do not use much gasoline in comparison to the upper classes with their luxury cars. That means the government is in fact supporting the upper classes’ luxurious lifestyle by providing them with cheap fuel which in fact they do not need.

On the other hand, many environmental experts believe that such subsidies are in fact encouraging people to consume more and to care less about the negative impact that they are leaving on the environment. Cheaper fuel means more careless consumption that is more consumption in fact. Most of Iran’s big cities are currently struggling with high levels of air pollution which is a direct outcome of the cheap fuel which is being consumed by everyone on a daily basis.

New job opportunities
One other argument that is behind the heavy energy subsidies in Iran, is to support and create new job opportunities. In this regard one major example could be the subsidy which is provided for the gas consumed by the industrial units.

An example in this area would be the best explanation to the question of how well this strategy has paid off.

In Iran a major part of the country’s gas is consumed in the industrial sector. In this particular example I want to take a look at the cement industry as a sample community. Every year in Iran, about 90 trillion rials (nearly $2.15 billion) is allocated to the gas subsidies used in the cement industry while based on the data provided by the industry ministry, the total revenues earned from this industry in the past Iranian calendar year (March 2018-March 2019) was reported to be 15 trillion rials (about $357 million). 

Considering the revenue earned and the amount of subsidies, it is clear that 75 trillion rials is lost. Now the interesting part is that considering the fact that there are nearly 250,000 people working in the country’s cement industry, if the subsidies money was directly paid to the workers, each worker would earn 350 million rials, which is way more than most of their actual annual income level.

Supporting domestic production

The above example might make you think that the money has been spent to support the domestic production, as it has been stated as one of the main goals for energy subsidies. 

It has been years that Iran is allocating subsidies for many industrial sectors, including the auto industry, the cement industry and etc. but the outcome has not been what is expected it to be. 

Using more and more subsidies has made most industries less competitive and more reliant on outside sources for their inefficiencies.

One recent example is the emerging of the great number of Bitcoin mining farms all over the country. It was reported that even in many of the country’s industrial parks the production units were using the subsidized electricity to farm Bitcoin instead of producing what they were supposed to be making.

Final thoughts

As many energy and economic analysts and scholars have stressed before, it is obvious and almost certainly we could say that allocating huge amounts of energy and fuel subsidies is not a good strategy to follow.

The budget that is allocated for subsidies every year could be spent in a variety of more purposeful, more fruitful areas. The country’s industry should compete in order to grow, people must learn to use more wisely and to protect the environment.

A government which provides irrational amounts of subsidies for energy consumption is just like a father who spoils his children by over-protecting and over-supporting them, those children, most probably, won’t turn out to be successful contributors to their society.

From our partner Tehran Times

Continue Reading

Latest

Defense3 hours ago

In a Dark Time: The Expected Consequences of an India-Pakistan Nuclear War

Twenty-one years ago, in 1998, Dr. Louis René Beres, Professor Emeritus of International Law at Purdue University, published an authoritative...

South Asia5 hours ago

Kashmir Once Again Playing out as Diplomatic Theatre at the United Nations

Friday’s closed-door meeting of the UN Security Council on Jammu and Kashmir marked the first time in over 50 years...

Southeast Asia7 hours ago

In Myanmar, Better Oversight of Forests a Vital Step in Transition to Rule of Law

Authors: Art Blundell and Khin Saw Htay For the first time, the Myanmar Extractive Industries Transparency Initiative (MEITI) has opened...

Americas9 hours ago

Presidential elections – 2020, or does Trump have “federal reserve”?

On July 31, the US Federal Reserve’s Open Market Committee cut interest rates – the first such move in 11...

Russia12 hours ago

Short Letter vs. Long Telegram: US Ambassador Huntsman Departs Moscow

The resignation of US ambassador to Russia Jon Huntsman is a good occasion to take stock of one of the...

Economy14 hours ago

Internship tips from an intern who became an owner and CEO

Internships can be a valuable opportunity to start your full-time working career, and change your life. Fatih Ozmen went from...

South Asia16 hours ago

Abrogation of Article 370 and Indian Plan for Plebiscite in Jammu & Kashmir

Since 2014 India is being ruled by a Hindu ultra-nationalist party of Bhartiya Jannta Party (BJP) and extremist Narendra Modi...

Trending

Copyright © 2019 Modern Diplomacy