Connect with us

Green Planet

The Existential Crisis of Global Warming and Carbon Capture

Dr. Arshad M. Khan

Published

on

If we care about our earth (and the readers here are most likely to) the story is quite simple:  We emit 40 billion tons of carbon annually, and little is being done to reduce it.   There is also not much likelihood of any action from our leaders, given the Senate vote on the Green New Deal and President Trump’s well-known views on the subject.  So how do we get rid of the carbon about to turn earth into a living hell?  Deadlines have been clearly laid down by experts.  

The October 2018 IPCC report on limiting global warming to 1.5C above preindustrial levels notes human-caused CO2 emissions would have to achieve ‘net-zero’ by 2050.  According to the report, this would necessitate ‘far-reaching transitions’ not just in how energy is used and produced but also in the use of Negative Emissions Technologies (NETs) such as carbon recapture from the air.  We have to stabilize earth or eventually a self-reinforcing feedback loop will lead to uncontrollable warming and a “Hothouse Earth”  without any means of reducing earth temperatures.  

Scientists assessing NETs find that restricting global warming to 1.5C requires large-scale deployment of NETs; in fact, a major national effort.  Moreover, any single NET is unlikely to be sustainably adequate, rather multiple NETs each on a more modest scale is the most effective scenario.  A comprehensive analysis is therefore both illustrative and illuminating.   

Direct air carbon capture and storage (DACCS) is an enticing prospect until one examines the costs.  Scientific scenarios project DACCS capacity to remove 10-15 billion tons of CO2 per year by century’s end.  Optimists up it to 35-40 billion tons solving the CO2 problem in one fell swoop.  Not so, say those who have examined costs. 

A group from the Mercatur Research Institute on Global Commons and Climate Change and Humboldt University of Berlin and in particular Sabine Fuss have examined costs reporting on different NETs in Environmental Research Letters (ERL, June 2018).  They put the cost at $100-300 per ton for DACCS and estimate sustainable removal at 0.5 – 5.0 GtCO2 per year — a Gt is approximately a billion tons. The upper level would still cost $500 billion to $1.5 billion according to them. 

The other major problem with DACCS is the sheer energy required.  Removing a million tons a year would consume 300-500 MW according to Jennifer Wilcox of Worcester Polytechnic.  The power needs to be  clean energy for a coal-fired plant would generate more CO2 than would be extracted. 

Climeworks is a company based in Switzerland that has developed a DACCS process.  Its pilot plant in Hellisheidi, Iceland, is using geothermal energy to remove CO2 from the air and store it in basalt.  They have also announced a commercial scale venture in Zurich, Switzerland.

In addition to active air capture as described, there is a passive approach.  An Arizona State University professor has developed a resin that when dry absorbs CO2 from the air, relinquishing it when immersed in water.  The team envisions artificial trees made from the resin each capable of capturing a daily ton of CO2. 

Afforestation, namely adding to forests, and reforestation are intuitively attractive.  But there are limitations because of competition for land from food production.  The CO2 removal is estimated at 0.5-3.6 billion tonnes of CO2 (GtCO2) per year (ERL, June 2018).  Of course given demand for land its use is reversible, and over time cost is likely to increase.

As an addendum to afforestation one might note an investment by Apple on a project by Conservation International to restore and protect 27,000 acres of mangroves in Columbia.  This will capture a million tons of CO2 annually as ‘blue’ carbon stored in coastal marshlands and mangroves can be up to ten times more dense than in forests. 

Bioenergy carbon capture and storage (BECCS) is also being employed.  As an example, Archer Daniels Midland began to capture CO2 emitted at its Decatur, Illinois, ethanol plant in 2017.  It is now successfully storing a million tons of CO2 per year underground  Scientists estimate the potential of BECCS at 0.5-5.0 GtCO2 per year (ERL, June 2018).  The technology is stable with good future prospects when other manufacturers also try to (or are obliged to) achieve carbon neutrality.

Biochar is formed from the pyrolysis of agricultural and forestry waste in a controlled process with reduced oxygen.  Not only is the carbon prevented from escaping but the char can be used to improve soil quality.  It can prevent from 0.5-2.0 GtCO2 per year from polluting the atmosphere, and scaling will reduce costs enhancing its potential.

Enhanced weathering refers to the improved absorption of CO2 by rocks like basalt to levels higher than the natural slow process.  The Potsdam Institute for Climate Impact Research estimates the cost at $200 per ton of CO2 using basalt and $60 per ton for dunite i.e. about double the cost for afforestation.  A handicap perhaps but afforestation is limited by land availability, and absorption by basalt could remove up to 4.9 GtCO2 annually, according to Potsdam estimates.  For best results, the rock has to be mined, ground up and spread out since CO2 absorption levels are heavily dependent on grain size.  The process does appropriate land limiting use in arable areas. 

Soil carbon sequestration can absorb up to 5 GtCO2 per year (2018).  It requires providing a continuous cover instead of letting fields remain bare after harvest to reduce carbon loss.  Other methods include no-till or conservation tillage.  The accumulated benefits with cropland, however, can be temporary and easily eroded if the land is ever plowed, calling for education programs in addition.  There is also agroforestry i.e. combining farming with trees and livestock grazing, which can be an option in some, but not all, farms and climates.

A new attractive technology is the direct conversion of CO2 into fuel.  It is an approach being used by Carbon Engineering of Squamish, B.C. in Canada.  Air-captured CO2 and supplemental hydrogen split from water are combined to produce gasoline and diesel for less than $4 per gallon.  The hydrogen removal uses renewable energy. 

Of the 40 billion tons of CO2 emitted annually, half is absorbed naturally.  The 20 billion tons remaining at present require human input to be eliminated.  A strategy employing a variety of techniques makes particularly good sense given the unusual possibilities opening up and the limitations of any single method.  On the other end of the scale, radical transitions in energy usage, transport, buildings, even cities, coupled with low-emissions energy production will reduce annual emissions.   What is left has to be recaptured to attain net carbon neutrality.  It is a monumental task requiring international cooperation including, if necessary, monetary incentives for poor and middle income countries.  Of utmost importance is to get started.

It is an insidious ailment for planet earth, its presence felt by the extraordinary intensity of extreme weather events — Cyclone Eline and Idai devastating Mozambique in quick succession, for example, were an unexpected event for the southern hemisphere.  On the other hand, such vagaries of weather as a cold spell, can draw mockery from President Donald Trump who proposes to do nothing.  He has emboldened others like Jair Bolsonaro, the new President of Brazil.

The real question is whether the American people will exercise profound discernment when the next election comes around.  If the senate’s confidence is any judge, they will not.  The senate voted 57-0 against the Green New Deal, the number including two Democratic senators.  The remaining Democrats voted ‘present’.  Not one Democrat stood up to be counted for GND under the pretense the Republicans were trying to split them.

Carbon capture has potential but who is going to invest in the processes to realize it?  Certainly not current senators who just voted for the opposite.  At the very least if they passed a law requiring net-zero emissions by 2050, it would encourage private enterprise to self-clean or provide services for others to do so.  But what are the chances of any of this happening?  Almost none without pressure would not be a bad guess.  Perhaps Greta Thunberg and her young cohorts are showing the older generations the way. 

Dr. Arshad M. Khan is a former Professor based in the US. Educated at King's College London, OSU and The University of Chicago, he has a multidisciplinary background that has frequently informed his research. Thus he headed the analysis of an innovation survey of Norway, and his work on SMEs published in major journals has been widely cited. He has for several decades also written for the press: These articles and occasional comments have appeared in print media such as The Dallas Morning News, Dawn (Pakistan), The Fort Worth Star Telegram, The Monitor, The Wall Street Journal and others. On the internet, he has written for Antiwar.com, Asia Times, Common Dreams, Counterpunch, Countercurrents, Dissident Voice, Eurasia Review and Modern Diplomacy among many. His work has been quoted in the U.S. Congress and published in its Congressional Record.

Continue Reading
Comments

Green Planet

India advances ground-breaking plan to keep planet and people cool

MD Staff

Published

on

India’s new comprehensive Cooling Action Plan targets an increase in sustainable cooling for the good of its population, while helping to fight climate change

Four years after temperatures hit the high forties in India, claiming over 2,000 lives, parts of the country are again baking in intense, and deadly, heatwaves. Throughout April and into May, the states of Madhya Pradesh, Maharashtra and Rajasthan have seen daily highs of 42°C.

As climate change increases, such temperatures are becoming the new normal. Combined with economic growth and urbanization, this brings a huge growth in cooling demand. The number of air conditioners in India is expected to rise from 15 million in 2011 to 240 million in 2030.

Cooling isn’t just about protecting against extreme temperatures. A recent study from the UN’s Sustainable Energy for All initiative puts India in the top nine countries at greatest risk from lack of access to cooling technology that also keeps food fresh, vaccines stable and children in education.

To give just a few examples, a quarter of vaccines in India arrive damaged because of broken or inefficient cold chains, while only four per cent of fresh produce is transported in refrigerated vehicles, leading to economic losses of US$4.5 billion annually.

Aware of these worrying statistics, the government launched earlier this year the India Cooling Action Plan, the first such holistic plan from any national government.

“Cooling is a developmental need, yet India has one of the lowest levels of access in the world,” says CK Mishra, Secretary at the Ministry for Environment, Forest and Climate Change. “To support economic growth and improve resilience, it is inevitable that India will embrace cooling.

“By accelerating and integrating policies, regulations, workforce training and research and development, this plan mobilizes government, industry and society to ensure thermal comfort for all while keeping to our international environmental commitments and not burdening ourselves with inefficient, expensive infrastructure and an overstretched power grid.

“The plan recognizes the significant role of accelerated action on building and appliance efficiency, and the economic and environmental benefits of new technologies such as thermal storage and district cooling.”

Energy efficiency a key approach

By 2038, the plan aims to reduce cooling demand by up to 25 per cent, refrigerant demand by 25–30 per cent and cooling energy requirements by up to 40 per cent. It aims to double farmers’ incomes by improving the cold chain and so wasting less food.

These are big goals, but experts believe India’s plan is sensible and achievable.

“Living in India you quickly understand the importance of keeping cool for your health and day-to-day functioning,” says Benjamin Hickman, a UN Environment technical advisor based in India. “This plan acknowledges head-on that Indian cooling demand will grow eightfold in 20 years and recommends a myriad of cross-cutting solutions that urgently need to be implemented and scaled up.”

Crucially, the plan also aligns India’s cooling growth with the Kigali Amendment to the Montreal Protocol. This international agreement obliges nations to phase down the use of hydrofluorocarbons (HFCs)—refrigerants that are thousands of times more potent greenhouse gases than carbon dioxide.

Globally, the agreement can deliver up to 0.4°C of avoided warming by the end of this century just by phasing out hydrofluorocarbons. Simultaneously improving the energy efficiency of cooling equipment could double the benefits. According to a study by the Lawrence Berkley National Laboratory, such energy efficiency improvements can benefit India. If the average room air conditioner efficiency improves by six per cent per year, more than 64 TWh per year of energy could be saved by 2030. This would cut greenhouse gas emissions, protect cities’ power infrastructure from overload, and bring cumulative consumer benefits of up to US$25 billion.

Prioritizing new cooling solutions

The plan doesn’t just look at efficiency. It prioritizes other solutions, such as passive cooling, building design, fans and coolers, new technologies and behavioural change. Among the new technologies is district cooling—the distribution of cooling energy from a central plant to multiple buildings.

The Ministry of Environment, Forests and Climate Change is co-chair of the UN Environment-led District Energy in Cities Initiative, which is working with three pilot cities—Amaravati, Rajkot and Thane – in India to demonstrate these technologies. Three quarters of the buildings required for 2030 have yet to be built, so there is a huge opportunity for new urban developments to use district cooling, which can be up to 50 per cent more efficient than stand-alone solutions.

“UN Environment praises India’s leadership in being the first country to adopt a comprehensive plan for the cooling sector,” says Atul Bagai, Head of UN Environment’s India Country Office. “Singling cooling out is vital to scaling up and targeting action on what has for years been a silently growing environmental catastrophe, and India’s Cooling Action Plan should set the benchmark for other countries to follow. UN Environment stands ready to support India to achieve and surpass its targets.”

Last month, UN Environment, the Climate and Clean Air Coalition, the Kigali Cooling Efficiency Program, and Sustainable Energy for All launched the Cool Coalition. The coalition is a unified front that links action across the Kigali Amendment, Paris Agreement and Sustainable Development Goals. It will inspire ambition, identify solutions and mobilize action to accelerate progress towards clean and efficient cooling.

These kinds of actions provide hope that we can help keep everyone, and the planet, cool.

UN Environment

Continue Reading

Green Planet

Just One-Third of the World’s Longest Rivers Remain Free-Flowing

MD Staff

Published

on

Just over one-third (37%) of the world’s 246 longest rivers remain free-flowing, according to a new study published in the scientific journal Nature. Dams and reservoirs are drastically reducing the diverse benefits that healthy rivers provide to people and nature across the globe.

A team of 34 international researchers from McGill University, World Wildlife Fund (WWF), and other institutions [1] assessed the connectivity status of 12 million kilometers (~7.5 million miles) of rivers worldwide, providing the first ever global assessment of the location and extent of the planet’s remaining free-flowing rivers. [2]

Among other findings, the researchers determined only 21 of the world’s 91 rivers longer than 1,000 km (~600 miles) that originally flowed to the ocean still retain a direct connection from source to sea. The planet’s remaining free-flowing rivers are largely restricted to remote regions of the Arctic, the Amazon Basin, and the Congo Basin.

“The world’s rivers form an intricate network with vital links to land, groundwater, and the atmosphere,’’ said lead author Günther Grill of McGill’s Department of Geography. ‘’Free-flowing rivers are important for humans and the environment alike, yet economic development around the world is making them increasingly rare. Using satellite imagery and other data, our study examines the extent of these rivers in more detail than ever before.”

Dams and reservoirs are the leading contributors to connectivity loss in global rivers. The study estimates there are around 60,000 large dams worldwide, and more than 3,700 hydropower dams are currently planned or under construction. They are often planned and built at the individual project level, making it difficult to assess their real impacts across an entire basin or region.

“Rivers are the lifeblood of our planet,” said Michele Thieme, lead freshwater scientist at WWF and global leader of WWF’s free-flowing rivers initiative. “They provide diverse benefits that are often overlooked and undervalued. This first-ever map of the world’s remaining free-flowing rivers will help decision makers prioritize and protect the full value rivers give to people and nature.”

Healthy rivers support freshwater fish stocks that improve food security for hundreds of millions of people, deliver sediment that keeps deltas above rising seas, mitigate the impact of extreme floods and droughts, prevent loss of infrastructure and fields to erosion, and support a wealth of biodiversity. Disrupting rivers’ connectivity often diminishes or even eliminates these critical ecosystem services.

Protecting remaining free-flowing rivers is also crucial to saving biodiversity in freshwater systems. Recent analysis of 16,704 populations of wildlife globally showed that populations of freshwater species experienced the most pronounced decline of all vertebrates over the past half-century, falling on average 83 percent since 1970.

The study also notes that climate change will further threaten the health of rivers worldwide. Rising temperatures are already impacting flow patterns, water quality, and biodiversity. Meanwhile, as countries around the world shift to low-carbon economies, hydropower planning and development is accelerating, adding urgency to the need to develop energy systems that minimize overall environmental and social impact.

“Renewable energy is like a recipe – you have to find the right mix of ingredients to have both a sustainable energy grid and a thriving natural world,” said Thieme. “While hydropower inevitably has a role to play in the renewable energy landscape, well-planned wind and solar energy can be more viable options for rivers and the communities, cities, and biodiversity that rely on them.”

The international community is committed to protect and restore rivers under Agenda 2030 for Sustainable Development, which requires countries to track the extent and condition of water-related ecosystems. This study delivers methods and data necessary for countries to maintain and restore free-flowing rivers around the world.

Visit freeflowingrivers.org for more information on free-flowing rivers and an interactive map of the world’s rivers.

[1] Contributing Institutions:

McGill University, WWF-US, WWF-NL, WWF-UK, WWF-Mediterranean, WWF-India, University of Basel, Joint Research Centre (JRC), WWF-China, WWF-Canada, WWF-Zambia, WWF Greater Mekong Programme, The Nature Conservancy, University of Nevada, WWF-Malaysia, IHE Delft, WWF- Germany and HTWG Konstanz, King’s College London, Umeå University, Swedish University of Agricultural Sciences, University of Washington, Harvard University, University of Wisconsin-Madison, Conservation International , WWF-Mexico, WWF International, Stanford University, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Freie Universität Berlin, WWF-Brazil, Eberhard Karls University of Tübingen.

[2]  First ever science-based definition of a free-flowing river:

Rivers where ecosystem functions and services are largely unaffected by changes to fluvial connectivity allowing an unobstructed exchange of water, material, species, and energy within the river system and with surrounding landscapes.

WWF

Continue Reading

Green Planet

5 things you need to know about forests and the UN

MD Staff

Published

on

Forests are vitally important for sustaining life on Earth, and play a major role in the fight against climate change. With the 2019 session of the United Nations Forum on Forests wrapping up on Friday in New York, we delve deeper into the subject, and find out what the UN is doing to safeguard and protect them.

Forests are the most cost-effective way to fight climate change

Arguably, protection and enhancing the world’s forests is one of the most cost-effective forms of climate action: forests act as carbon sinks, absorbing roughly 2 billion tonnes of carbon dioxide each year.  Sustainable forest management can build resilience and help mitigate and adapt to climate change.

Speaking at the 2018 UN climate conference (COP24) in Katowice, Poland, Liu Zhemin, head of the UN’s Department of Economic and Social Affairs (DESA), said that “forests are central in developing solutions both to mitigate and adapt to climate change, adding that “these terrestrial ecosystems have already removed nearly one third of human-produced carbon dioxide emissions from the atmosphere. Through sustainable forest management, they could remove much more.”

At this week’s meeting session of the UNFF, it was noted that forest-based climate change mitigation and adaptation actions, if fully implemented, could reduce greenhouse gas emissions by around 15 gigatonnes of CO2 a year by 2050, which could potentially be enough to limit warming to well below 2°C (the target set by the international community in 2015). Today, fossil fuels emit 36 gigatonnes every year.

In addition, as renewable sources increasingly replace fossil fuels, forests will become more and more important as sources of energy: already, forests supply about 40 per cent of global renewable energy in the form of wood fuel – as much as solar, hydroelectric and wind power combined.

The goal of zero deforestation is close to being reached

Significant progress has been made in international forest protection over the past 25 years. The rate of net global deforestation has slowed by more than 50 per cent, a credit to global efforts to sustainably manage existing forests, while at the same time engaging in ambitious measures to restore degraded forests and land, and to plant more trees to meet the demand for forest products and services. 

The goal of zero net global deforestation is close to being reached, bringing the world one step closer to the UN Strategic Plan for Forest’s target to expand global forest area by 3 per cent by 2030, an area of 120 million hectares, about the size of South Africa.

The biggest threat to forests is…agriculture

Many people will be aware of the devastating effects that illegal and unsustainable logging has on forests, but the biggest global driver of deforestation is actually agriculture, because of the extent to which forests are converted to farmland and livestock grazing land: a key challenge is how to manage the ongoing increase in agricultural production, and improve food security, without reducing overall forest areas.

A major UN report on biodiversity, released in May, made headlines around the world with its headline figure of one million species at risk of extinction, warned against the destruction of forests, noting that this “will likely have negative impacts on biodiversity and can threaten food and water security as well as local livelihoods, including by intensifying social conflict.”

The UN’s growing role in forest protection

The first time forests came to the forefront of the international agenda was at the 1992 Earth Summit in Rio, widely regarded as one of the landmark UN conferences. The Summit led to the adoption of Agenda 21, the first significant international action plan for achieving sustainable development, which noted the “major weaknesses in the policies, methods and mechanisms adopted to support and develop the multiple ecological, economic, social and cultural roles of trees, forests and forest lands.”

The Earth Summit also saw the adoption of the Forest Principles which, although non-legally binding, was the first global consensus reached on the sustainable management of forests. The Principles called for all countries to make efforts towards reforestation and forest conservation; enshrined the right of nations to develop forests in keeping with national sustainable development policies; and called for financial resources to be provided for targeted economic policies.

To better co-ordinate international efforts to put the principles into practice, an inter-governmental panel and forum were set up in the 1990s, to be replaced in 2000 by the UN Forum on Forests (UNFF), which meets every year at UN Headquarters in New York to monitor progress on the implementation of the six Global Forest Goals.

The Goals set targets for the sustainable management of forests, and reduction of deforestation and forest degradation, and were developed as part the forest community’s response to the 2030 agenda for Sustainable Development, the UN’s overall blueprint for economic progress that protects the environment and humanity.

This year’s top priorities: climate change and the real cost of deforestation

One of the key take-aways from the 2019 session of the UN Forest Forum was that, too often, forests are under-valued, because it’s hard to put a clear monetary value on all of the positive contributions they make to the world.

As a result, the true cost of deforestation and forest degradation is not taken into account when policy decisions are made on land use, such as decisions to clear forest land to use for commercial agriculture. 

The importance of financing was another important element of the session:  sufficient funding is an essential element in ensuring effective action to halt deforestation and forest degradation, promote greater sustainable forest management and increase the world’s forest area: despite the central role forests play in protecting the environment, only 2 per cent of funds available for climate change mitigation are available for efforts to reduce deforestation.

Continue Reading

Latest

Trending

Copyright © 2019 Modern Diplomacy