Connect with us

Science & Technology

Shared, automated… and electric?

Published

on

Authors: George Kamiya and Jacob Teter*

Automated driving and shared mobility could dramatically reshape road transport over the coming decades, with major implications for vehicle electrification and the broader electricity system. But can we assume that shared and/or autonomous vehicles of the future will be electric?

While electric vehicles (EVs) tend to be more expensive to purchase, they have lower fuel and maintenance costs than conventional vehicles. As shared and/or autonomous fleets would typically have heavier use patterns than with privately owned vehicles, the lower running costs could make EVs cheaper overall. But whether EVs could fulfil all the operational and technical requirements of shared and/or autonomous vehicles is less certain.

Building upon our look at emerging mobility technologies and services, we discuss the opportunities and challenges of electrifying shared mobility car fleets today and examine prospects for electrifying autonomous vehicles in the future. We explore how we might need to begin to re-think EV-related policies and investments to capitalise on synergies between the three revolutions – sharing, automation and electrification.

Shared and electric?

Car sharing services, which emerged in major cities in the early 2000s, allow members to borrow cars on a short-term basis. As car sharing fleets tend to have shorter trip distance profiles and higher utilisation rates compared to privately owned vehicles, EVs might be a good fit. In fact, several car sharing programs already operate all-electric fleets, including Moov’in.Paris, BlueSG (Singapore), Carma (San Francisco), car2go (Stuttgart, Amsterdam, Madrid, Paris), and DriveNow (Copenhagen).

Most car sharing services operate in one of two ways: free-floating systems where cars can be parked anywhere, or hub/depot services where cars must be left in designated parking spots. In recent years, smartphones and mobile connectivity have made free-floating systems (and by extension one-way journeys) easier to access and pay for.

But free-floating systems using EVs face operational challenges as they rely on a limited number of public fast chargers. These challenges could be overcome through larger batteries, a better-designed charging network (e.g. faster chargers, more stations), or user incentives. In comparison, hub/depot car sharing systems can schedule slower and cheaper charging on their own chargers during vehicle downtimes.

Just as smartphones have changed the way car sharing services operate, they have fostered the rapid expansion of app-based ride-sourcing services provided by so-called transportation network companies (TNCs) such as Uber, Lyft, Didi Chuxing and GrabTaxi. The adoption of EVs in TNC fleets has been slow, despite the significant fuel and maintenance savings potential of EVs for full-time drivers working with TNCs. EV shares on the major ride-sourcing platforms remain below 1% with the exception of Didi at 1.3%, which already has over 400 000 EVs on its network. In California, EVs represented about 1% of vehicle share and trip miles in 2017.

There are also several barriers to EV adoption in taxis and ride-sourcing fleets. First, EVs are generally more expensive to purchase, and few EV models available today meet all the operational requirements of taxis and ride-sourcing services – notably long electric range, seat capacity and large trunk space.

Second, the combination of limited driving range, long charge times, and/or limited access to fast charging can pose challenges – searching for available chargers and long charging times could mean foregone revenues for drivers. Some taxi fleets are demonstrating the use of fuel cell electric vehicles (FCEVs) which could address some of these operational challenges.

Third, TNCs have limited ability to influence purchase decisions of their drivers, including in most jurisdictions where they cannot specify the use of particular vehicle models. But several TNCs are initiating programs to encourage usage of EVs on their platforms. Uber’s Clean Air Program in London provides financial incentives to drivers to switch to or drive more in EVs while Lyft ExpressDrive’s short-term lease options allow drivers to try EVs with little risk. Maven, GM’s car-sharing spin-off, offers a service of short-term rentals of the Chevrolet Bolt BEV to drivers working for TNCs and other shared platforms.

Shifting to EVs for car sharing and TNCs could lead to much larger per-vehicle reductions in GHG and local pollutant emissions compared to privately owned EVs. High utilisation and faster fleet turnover could also help to accelerate battery innovation cycles and more rapid adoption of increasingly efficient vehicles. In addition, given the importance of EV awareness and experience in influencing purchase decisions, the potential exposure of the benefits of electric drive to millions of potential car buyers could indirectly help to increase adoption of privately owned EVs.

Autonomous and electric?

Meanwhile, rapid advances in sensing technologies, connectivity, and AI are bringing highly automated vehicles – autonomous vehicles (AVs) – closer to market. Waymo recently launched their self-driving car service, Waymo One, while major automakers have announced plans to introduce AVs as early as 2020.

Just as with shared mobility and electrification, there are synergies between automation and electrification. With high utilisation rates, commercial fleet applications (where early adoption of AVs seems likely) tend to favour powertrains with lower operations and maintenance costs, including EVs. Well-coordinated fleets of electric AVs may be able to manage challenges around range, access to charging infrastructure, and charging time management. Automated driving technologies may also be easier to implement in EVs due to the greater number of drive-by-wire components.

However, higher utilisation rates of commercial AVs will also mean greater travel distances per day, requiring larger and more expensive battery packs or more frequent recharging (and downtime). AVs may also require significant power consumption to power on-board electronics, though the efficiency of these chips is improving rapidly, from 3‑5 kW in the first generation to less than 1 kW today.

While there is considerable debate regarding how quickly (and if ever) AVs will enter the mainstream, there are specific use cases where the feasibility and economics favour early adoption. For example, commercial applications where labour costs are high or where automation could enable higher vehicle utilisation (e.g. trucks, buses, taxis and ride-sourcing) have the largest potential for cost-cutting through automation.

Pilots and trials are underway for these applications in over 80 cities around the world, and nearly all are using some form of electrified vehicle. Notable examples include robotaxis from Waymo and nuTonomy/Lyft, autonomous electric shuttles across cities in Europe and North America, and autonomous electric buses in Asia. In California, EVs now account for around 70% of automated vehicle trial miles (mostly plug-in hybrids).

A growing number of trials of autonomous electric urban delivery vehicles are also being undertaken in a number of cities in China and the United States. While testing of autonomous freight trucks has been limited to date, early models and concepts from Einride, Ford, and Volvo  suggest a push towards all-electric. Tesla’s all-electric Semi is equipped with Enhanced Autopilot (equating to SAE Level 2 automation), which allows for automatic lane-keeping, forward collision warning, and automatic emergency braking.

Shared, autonomous and electric vehicles… and the grid

Governments, utilities, and other companies are actively working to build out charging infrastructure to support the growing number of EVs. Recent research (here, here, and here) shows how public charging infrastructure in particular will be critical in catalysing further market uptake of personally owned electric cars.

For fleets, their intensive and distinct use patterns imply greater (and different) needs for charging compared to private EVs. The availability and coverage of public and fast chargers could be a critical factor in how quickly these fleets become electric, and how business models evolve around shared and/or automated mobility.

EVs currently make up only about 1% of all passenger cars globally, but clustering effects in EV adoption at the local level, combined with uncoordinated charging, could cause problems for the distribution grid, and eventually require greater investments in power generation and transmission.

A combination of pricing incentives and digital technologies (including, eventually, coordinated discharging of EV batteries) could better coordinate fleet and private charging of EVs, minimising negative grid impacts, reducing CO2 emissions, and providing ancillary services. A transition to shared, automated, and electric vehicle (SAEV) fleets could also yield significant system-wide benefits for the grid, assuming the necessary digital technologies and incentive structures are in place.

Researchers are already looking at how different fleet compositions of SAEVs and charger availability could impact costs, operations, and grid impacts. For instance, fleet simulations in Austin, Texas (2016, 2018); Zurich, Switzerland (2016); Columbus, Ohio (2018); and Tokyo, Japan (2019) have investigated how varying fleet size, electric range, charger speed, and pooling could impact vehicle travel patterns and wait times. As the electric fleets modelled in these simulations begin to roll out in the real world, empirical data will lead to a far more robust and deep understanding of the opportunities and trade-offs of SAEVs.

In the near-term, appropriate data sharing between policy makers, utilities, and fleet operators could help anticipate needs for charging infrastructure as mobility service fleets electrify. Over the long-term, shifts towards SAEV fleets could improve the economics of charging infrastructure by increasing utilisation, promoting faster returns on investments and reducing reliance on subsidies and indirect revenue streams through grid services. Utilities could also explore rate structures that maximise grid benefits. Volumetric energy rates based on hourly wholesale pricing, for instance, may be a promising means of reducing peak loading and promoting charging at times when variable renewables are at their peak.

Policies and strategies to electrify a shared and/or automated future

National, regional, and municipal governments around the world are implementing a range of policies to encourage EV adoption and use. Country (and city)-specific objectives, constraints, and contexts will continue to shape the design of appropriate policy mixes for each jurisdiction.

Purchase incentives have generally been effective in encouraging the purchase of EVs, in turn helping to stimulate investment and bring down costs of battery and EV production. Mandates that car manufacturers produce minimum volumes of EVs (i.e. ZEV mandates) have complemented these by providing supply-side certainty.

But with growing adoption of shared (and potentially autonomous) mobility, the importance of policies designed to more directly incentivise the use of EVs over conventional vehicle travel will grow. These policies could include fuel taxes, zero-emission zones, road pricing, HOV and transit lane access, incentives for electric mobility services, or even restrictions on the use of conventional vehicles. Supporting the build-out of charging infrastructure will continue to be crucial to further EV adoption and use, including fast-charging infrastructure in densely populated metropolises and a robust charging network to support a transition to all-electric fleets. Cities where taxi and bus fleets are already making the transition to electric drive may be able to leverage fast-charging stations built for these fleets to spur a transition to electric shared mobility.

Researchers and policymakers are exploring alternative policy frameworks that could be effective in promoting electrification of shared and, eventually, autonomous fleets. California’s SB-1014 “California Clean Miles Standard and Incentive Program: zero-emission vehicles” approved in September 2018 aims to establish annual emission reduction targets for TNCs per passenger-mile. London’s Ultra Low Emissions Zone encourages for all road users, including fleets, to switch to EVs.

Given the uncertainty in how emerging trends could reshape mobility, policymakers might look to more flexible and forward-looking policies and strategies to get ready for different futures.

There may already be useful lessons learned on EV policy and infrastructure planning from cities with high rates of electrified taxis and buses such as Shenzhen, Amsterdam and Santiago. Electric bus depots or other centralised charging hubs could also serve mobility service fleets of the future, supplementing or even servicing the majority of charging needs. Such hubs could be located outside of cities, where property values (not to mention constraints on high voltage installations) are lower. But there may be systems-level repercussions to relying on such a strategy: it could lead to more traffic congestion and lower operational service efficiency from increased “deadheading”.

Dynamics are likely to differ between cities and geographies, driven by differences in power generation mixes and in mobility patterns. Simulations and case studies can begin to illustrate the levers behind such differences, and to anticipate the potential transformations that might occur if, and when, cars and buses become fully autonomous.

To help inform the design of flexible and forward-looking policies, research needs to continue to improve our understanding of a few key questions:

How do the charging needs of fleets differ from those of privately owned cars and in different geographic contexts? How can public charging infrastructure work to support the electrification of fleets and promote driving on electricity?

How might automated fleets change investment decisions around charging infrastructure, including the economics of wireless charging or battery swapping? What business models, data sharing, or policy is needed to balance charging infrastructure needs to support mobility service fleet operations and grid operations?

What are the energy and emissions implications of various market and regulatory designs of power markets? How can they facilitate the transition to renewable and low-carbon energy generation?

Electrifying vehicles can reduce some of the environmental impacts of mobility, notably local air pollution and greenhouse gas emissions. But other adverse effects on society could be exacerbated by emerging mobility technologies and trends, including congestion, inequality, and mobility access issues. Policy makers will need to implement comprehensive policy packages that guard against these challenges. We will explore these and other critical issues in upcoming commentaries.

*Jacob Teter, Transport Analyst

IEA

Science & Technology

Rachel Lyons: Shaping the future of humanity in space

Published

on

image source: Space for Humanity

Rachel Lyons is the executive director at Space for Humanity. Space for Humanity is a non profit organisation in the US which is cultivating a movement to expand access to space for all humanity. Rachel is working towards making space exploration more inclusive and accessible to people worldwide. Space for Humanity is advocating space inclusivity in the US and is working with space experts, astronauts and other prominent people in the space sector to bring about change. In this conversation with Modern Diplomacy, Rachel discusses more about her experience working in the space advocacy sector.

What role is Space for Humanity playing in the future of the world?

This is a big question. If you think about our world, and the systems that we have in place – the types of people they favor, the types of activities that get prioritized, it becomes clear that these systems were built with foundational values of money and power being the highest priorities. If our values shift to things like the preservation of life, love, and wellbeing of humans and our planet — and this is what S4H is working to fundamentally address — the structures that are built on top of it will also begin to shift. This is what we are working to address. A shift in perspective that will ultimately cause behavior, relationships, and systems to change accordingly.

Why is advocacy important in the space exploration sector? What are some things you want to change about how we explore space? 

Advocacy is important because it influences public opinion and policy. Very often, when I share the importance of space exploration, people question why we are going to space when we face so many challenges on our own planet. The reality is, the technological advancements in space have impacted the lives of people globally in positive ways, and culturally the impacts have been massive (for example, the EarthRise Image of our planet from a distance from the Apollo era is said to have sparked the modern environmental movement). It is important for people to know, we go to space not because we choose it over earth, but because we love earth.

How can countries increase collaboration for space exploration?

This is a big question – I can talk about it from the individual’s perspective. If you are a young person, and you’re interested in space, by joining and supporting organizations like Students for the Exploration and Development of Space and the Space Generation Advisory Council, you can meet like minded people that are just beginning their career. Starting off early, networking, learning about what people are working on can open up collaborative opportunities exponentially for your entire career, no matter where that takes people.

Will all countries get an equal opportunity to. Go to space first when Space for Humanity’s citizen flights start?

Yes – that is our mission. And, there are some restrictions that we need to be realistic about. For example, countries that have more access to the internet are more likely to hear about S4H’s mission. Additionally, because of guidelines and safely with the flight providers, people must speak english in order to fly, so that limits access to others. And, it is extremely important to us for our mission to be as accessible as possible.

Why do you think it’s necessary for people to go to space and see Earth from above?

The perspective shift. Seeing the earth from above — the beauty, fragility, and interconnectedness of everything on it, can change a person for the reason of their lives. This cognitive shift is called the Overview Effect and it has been widely studied. Many astronauts return to earth with a new care for our planet and new care for people. They see how special and finite our existence is. They see the miraculousness and meaninglessness of it all at once. This perspective is essential, given the global nature of our greatest challenges, and what we are currently facing.

How is Space for Humanity planning to increase operations and advocacy across the globe?

Keep sharing our mission! The majority of our online content is totally free. We have people from 100+ countries that have applied to our program, follow us on social media, and attend our events. We are working to bring more and more people from all over onto our leadership board as well. We are so excited to keep expanding, and having efforts across the globe is an essential part of our mission.

How do you plan to share Space for Humanity’s vision with the world?

So many ways. We’re already done it via social media, launch parties, webinars, in person events, at conferences, public events, and more. We will continue doing this – sharing our mission IS our mission. Creating a perspective shift, on earth or off of it, IS our mission. In future years, when we sponsor astronauts to go to space, they will return to earth and commit themselves to sharing our mission. This is how we will continue amplifying the message.

Do you see other organisations like Space for Humanity starting worldwide? With a similar model?

There are similar organizations, like the Space Generation Advisory Council, that is a global network of space professionals.

Then there’s the Space Frontier foundation, that hosts a yearly conference and is a space advocacy organization.

The Planetary Society does a really great job of sharing space globally as well.

Virgin Galactic is a commercial space flight organization, where people will soon be able to purchase tickets to go to space.

These all exist and are doing great work, and there is no other organization like Space for Humanity. There is no organization that is working to start a movement using the spaceflight perspective, by sponsoring people from all over the world to go to space.

Continue Reading

Science & Technology

Antivirals, Spaceflights, EdTech, and Hyperloops: 20 Markets That Will Transform Economies

Published

on

As the world grapples with the socio-economic consequences of the COVID-19 pandemic, there is increasing demand to shape a new economy that addresses broader societal and environmental challenges while generating economic growth. To achieve this, the world needs to set an ambitious agenda of technological and socio-institutional innovations to pilot new markets that can help solve these challenges.

The World Economic Forum highlights 20 markets that could transform our economies. Some will rely particularly on advances in technology (e.g. broad-spectrum antivirals, spaceflights), while others will require radically new social and institutional set-ups (e.g. skills capital, water rights, quality credits). Others will emerge from a combination of both elements (e.g. data, genes and DNA sequences). Each of these markets has potential benefits in multiple dimensions. For example, they could help societies to protect and empower people (e.g. precision medicines and orphan drugs, EdTech and reskilling services), advance knowledge and understanding (e.g. artificial intelligence, spaceflights, satellite services), or protect the environment (e.g. greenhouse gas allowances, reforestation services, hydrogen).

“While protecting people remains the priority at present, now is also the time to plan a post-pandemic transformation of our economies. We must ensure that new economic activities do not only generate growth but also provide solutions to the problems that our societies are facing, said” says Saadia Zahidi, Managing Director, World Economic Forum. “The future of our economies, societies and the planet depend on developing these new, inclusive and sustainable markets.”

Creating these markets will require close collaboration between the public and the private sectors to:

  • Invent new products that can be sustainably produced
  • Nurture a set of companies to produce new products and bring them to market
  • Foster enough demand to sustain a commercially viable market
  • Establish clear standards that all actors can rely on and the market can converge on
  • Create alignment within society on how to value the new product
  • Develop the legal frameworks to identify, hold and exchange the new product
  • Build the necessary infrastructure to exchange, distribute and store the new product

Coalitions of actors at country and global level can come together to pursue the establishment of these conditions. For optimal societal outcomes, these markets should be designed around fairer and more sustainable ways of producing and distributing value. Examples include more collaboration between the public and the private sectors, innovative models to finance research and development, and designing the public sector’s risk-taking into the new ventures. Public institutions have a key role to play in catalysing public-private collaborations and create the systemic conditions for selected markets to emerge.

A preliminary mapping of countries’ potential for breakthrough technological and socio-institutional innovation indicates that those with advanced technological capabilities, strong social capital and future-oriented institutions are likely to succeed in developing a broader set of new markets. In particular, the Netherlands, Luxembourg, Denmark, Germany and Norway have the highest potential for socio-institutional innovation, while Japan, Germany, the United States, the Republic of Korea and France have the highest potential to generate breakthrough technological development.

Most advanced economies also score highly across both these dimensions. A number of high-income economies from the Middle East (Bahrain, Saudi Arabia, United Arab Emirates) and East Asia (Indonesia, Malaysia) as well as a few small island states (Barbados, Cyprus, Malta, Mauritius, Seychelles) and emerging African countries (Kenya and Namibia) can rely on significant levels of social capital and future orientation of policy-makers but do not yet have a mature technological system. A smaller group of advanced economies (Czech Republic, Israel, Italy, Japan, Spain) as well as the BRICs and other emerging economies (Hungary, Poland) present solid technological systems but need development in the social and institutional fabric to deliver these markets.

The disruptions brought by the COVID-19 pandemic provide an opportunity to pilot breakthrough technological and socio-institutional innovations that can grow into entire new markets. Success will ultimately depend on how well multistakeholder actors work together to create the necessary conditions for a number of key new markets to emerge that will help make economies more inclusive and sustainable. Existing market structures are not neutral; high levels of concentration and market power in adjacent industries to the new markets might slow down or even curb the establishment of such new markets.

Continue Reading

Science & Technology

Light at the end of the tunnel: New technologies to fight the COVID-19 on transport

Published

on

Disinfection robots, thermometer robots, smart tunnels, automatic passenger counting, powerful ultraviolet lamps and other examples of how new technologies reshaped public transport amid the COVID-19 outbreak.

The coronavirus pandemic has led to significant changes in many areas of life in just a few months. As the coronavirus continued to spread around the world, governments in several countries took measures to restrict movement, and people themselves tried to avoid traveling on public transport. The demand for the services of transport operators has dropped drastically. So, according to the Moovit Public Transit Index, passenger traffic in public transport on April 15, 2020 decreased in Israel by 92.1%, in Rome – by 89.2%, in Madrid – by 88.1%, in New York-by 74.8% and has not yet recovered. City residents are afraid to use public transport actively again, and their fears are fully justified. High daily passenger traffic and high frequency of contact between passengers make public transport an ideal environment for the spread of infections. The problem of fighting the spread of infections while maintaining normal life activity is particularly acute for large cities, such as Moscow or Beijing, where daily passenger traffic reaches 19.4 and 12.3 million passengers respectively. The average density of passengers on a bus or in a traincar at the same time ranges from 2 to 5 people per square meter, while, according to World Health Organization (WHO) recommendations, in order to comply with safety standards, passengers must maintain a social distance of 1.5 meters. Furthermore, virus particles can remain for a long time on public surfaces inside a bus or a traincar. Handrails on public transport are usually made of plastic, on which the coronavirus can remain up to 3 days, according to the New England Journal of Medicine. By touching them passengers increase the risk of contagion.

The key task for transport operators is to make the usage of public transport safe. To help them solve this problem came technology -all kinds of robots are widely used among innovations. With their help, it is possible to carry out disinfection effectively and safely without the involvement of staff. The Hong Kong Metro, also known as the Mass Transit Railway (MTR), together with the biotechnology company Avalon Biomedical Management Limited, has developed a disinfection robot that can disinfect even the most inaccessible places of traincars and stations. In addition to disinfection, robots can cope with more complex tasks. So, in Ningbo Lishe International Airport was tested a 5G-supporting robot-thermometer, which can measure temperature at a distance of 5 meters up to 10 people simultaneously and also identify those who are not wearing a face mask. Another innovation in many transport operators is the sanitary gate. According to Giulio Barbieri, one of the manufacturers, this is a “a tested, safe, and effective method to sanitize people and objects in just 5 seconds, killing up to 99% of any pathogenic microbes on the surfaces, including COVID-19”For example, the technology was tested in the Moscow and Dubai metros. In Moscow the clothes of the employees entering the depot were processed using a disinfection tunnel; at the same time, the territory was manually disinfected, so that the entire depot was safer for the staff.

The process of digitalization of ticket systems, which began long before the pandemic, also had a positive effect. Thanks to the competent actions of transport operators, the number of contactless payments in public transport around the world increased by 187% in the period from April to June, as evidenced by a report from Visa. Following WHO recommendations, many transport operators have made it mandatory to wear masks and maintain social distance on public transport. A number of digital technologies have been developed to comply with these rules. In the Beijing metro, compliance with a mask regime is controlled by cameras with a facial recognition system that can identify people. In addition, in the Panama Metro, observance of social distance is monitored by sensors which determine the degree of capacity of train cars. The technology called Mastria, which aggregates information from train weight sensors, ticket machines, signalling, management systems, CCTV and mobile networks for the Panama metro was developed by Alstom (a french manufacturer specializing in the production of infrastructure for rail transport) and installed almost a year ago. In just three months, thanks to artificial neural networks, it was possible to reduce average waiting times at stations by 12%. This development became particularly relevant during the pandemic. The Moscow metro is planning to introduce a similar technology. To maintain the social distance digital displays with colored indicators that reflect the level of capacity of subway cars will be installed. In the Moscow metro a new generation of traincars with an automatic air disinfection system built into climate control systems helped to reduce the risk of infection. It makes it possible to disinfect the air without disrupting the train schedule and attracting employees. The Moscow metro rolling stock consists of more than 50% of train cars with built-in UV lamps, and this percentage is constantly growing. After evaluating the effectiveness of using UV lamps to disinfect public transport, the transport operator MTA New York City Transit, together with Columbia University, launched a pilot project worth 1 million dollars on the use of disinfecting lamps. During the first phase of the project, 150 autonomous lamps were purchased and installed to decontaminate wagons, stations and buses in New York, during the second phase it is planned to install equipment in commuter rails. To carry out disinfection measures, the New York City Subway took unprecedented measures – the closure of the subway from 1 to 5 a.m. daily.

The use of robots, disinfection tunnels, digital technologies, ultraviolet lamps, and intensive work of staff – all this helped to reduce the risk of the spread of coronavirus in public transport and made a significant contribution to fighting the global problem. According to the coronavirus distribution model, developed by Imperial College London at the beginning of the pandemic, if no action had been taken by mid-March there would have been over 500,000 deaths from COVID in the UK and over 2.2 million in the USA. At the moment, in the middle of October, there are about 43,000 deaths in the UK and about 214,000 in the USA. Of course, these are high rates, but they could have been much higher if the necessary measures were not taken in time. Technological innovations already available today will continue to be used, which will make the stay of passengers on public transport more comfortable and safer, reducing the risk of the spread of any infectious disease, especially during the flu and cold seasons.

Continue Reading

Publications

Latest

Americas3 mins ago

Israel, the Middle East and Joe Biden

How will a Biden Administration change American policies on Iran, the Palestinians and Israel’s tightening relationships with Arab states? Some...

Diplomacy2 hours ago

Nuclear Weapons and Coercive Diplomacy- Book Review

In Nuclear Weapons and Coercive Diplomacy, Todd S. Sechser and Matthew Fuhrmann create both a thorough qualitative and meticulous quantitative...

Energy News4 hours ago

Global transformation of the electricity sector requires greater efforts to ensure security of supply

The electricity sector, which plays a large and growing role in energy systems around the world, is undergoing its most...

Finance6 hours ago

World Bank Group Sanctions Two Chinese Engineering Companies for 18 months

The World Bank Group today announced the 18-month sanctions of China National Electric Engineering Company Limited (“CNEEC”) and its wholly...

Africa8 hours ago

Used vehicles get a second life in Africa – but at what cost?

John Mwangi’s 22-year-old car is his lifeline. His run-down Toyota saloon not only ferries him around the streets of the...

Development11 hours ago

World Bank Announces ‘Mission Billion Challenge’ Winners

Leaders from around the world—including H.M. Queen Máxima of the Netherlands in her capacity as UNSGSA, the President of Estonia,...

Development12 hours ago

A framework agreement of cooperation between IsDB and Standard Chartered Bank

IsDB President Dr. Bandar Hajjar and M. Sunil Kaushal, CEO for Africa and Middle East, Standard Chartered Bank (SCB), signed...

Trending