Connect with us

Science & Technology

Russia’s Huawei 5G Conundrum

Published

on

The action being taken by various governments to limit the involvement of China’s Huawei in the provision of equipment for 5G has brought into sharp-focus an issue that has been around for some time, but is now becoming more acute for national security of individual countries. That is, how to ensure that purchased Information and Communication Technology (ICT) hardware and software does not contain aspects, either at time of purchase or later, that offer the possibility of being maliciously used on a large scale – either for espionage or sabotage of crucial national infrastructure.

Australia has totally banned the use of Huawei equipment in its future 5G telecommunications network, while the US has banned its use by official organizations. The US, UK and a number of other developed countries may eventually follow the Australian lead.

Recent focus has been very much on 5G because of the role that it will play in supporting the use of Artificial Intelligence (AI), Internet of Things (IoT), Cloud etc; and, the outsized role that Chinese companies in supplying much of the needed infrastructure (eg Huawei and ZTE) around the world.

The international developments seem almost certain to put Russia in a difficult position. Is it anti-Huawei, pro-Huawei, or somewhere in the middle. If it is in the middle, how does Russia ensure its national security interests?

A Russian National Technology Initiative (NTI) document in 2016 saw the world as being increasingly divided up into closed “economic-trade” blocks formed on the basis of a combination of economic and political issues. It was argued that these blocks, or “alliances, aim to develop and retain production value added chains” that are protected from outside competition by ensuring that their rules and standards become the norm. The NTI document went on to say that countries and companies which are outside these blocks/alliances and their value added chains cannot break into them because the technological standards have already been set to disadvantage them.

Thus, according to the document, the NTI was given the goal of making Russia “one of the ‘big three’ major technological states by 2035, and have its own high-tech specialization in the global chain of creating additional value”. In order to achieve this, Russia will need is own block/alliance or participate in others in such a way that it becomes a leader in “developing and confirming international technical standards”.

President Putin, in his address to the St. Petersburg economic forum on 17 June 2016, said: “Today we see attempts to secure or even monopolize the benefits of new generation technologies. This, I think, is the motive behind the creation of restricted areas with regulatory barriers to reduce the cross-flow of breakthrough technologies to other regions of the world with fairly tight control over cooperation chains for maximum gain from technological advances.”

Then US Secretary of State played-up the security aspects of such economic-trade blocs: “I have worked from day one to emphasize that foreign policy is economic policy and economic policy is foreign policy. Without a doubt, these trade agreements are at the center of defending our strategic interests, deepening our diplomatic relationships, strengthening our national security, and reinforcing our leadership across the globe.” “Even as we seek to complete TTIP and strengthen our bonds across one ocean, we know that our future prosperity and security will also rest on America’s role as a Pacific power. Central to that effort is the adoption of (Transpacific Partnership) TPP.”

However, given the prospective Brexit and the rise of Trump as an economic nationalist, such blocs seemed very unlikely when I first wrote about the NTI in 2016. Since then, Trump’s strident America first approach to the economy, abandonment of TPP, and lack of interest in an US role in international security issues would seem to have confirmed my earlier view.

Nevertheless, “Western” concern about advances in Chinese technology, the way it is being acquired (allegations of IP theft and heavy-handed treatment of companies seeking to invest in China), and the way it is being used (Xinjiang) seems to be leading to at least partial technology blocs — with the possibility of broadening to aspects of international trade and investment.

Whereas the NTI idea of economic / trade blocs was largely based on the political and economic consequences of growing global value-added chains in high-tech and Russia’s need to be part of this trend, we may now be in a situation where such economic / trade blocs will be formed by a perceived urgent need to tear existing high-tech value-added chains apart in the name of national security and create new ones. National Security is now very much in the driver’s seat!

Putin’s point about “attempts to secure or even monopolize the benefits of new generation technologies” remains valid, as does the issue — in a different form — of what bloc if any can or should Russia join.

Concerns about the security aspects of Huawei telecommunication equipment in the UK led to the establishment of the Huawei Cyber Security Evaluation Centre” (HCSEC). While Huawei pays the costs of this centre, it has no control over its operation. A HCSEC Oversight Board was established in 2014. Its fourth report in 2018 concluded that:

“5.2 The key conclusions from the Board’s fourth year of work are:

It is evident that HCSEC continues to provide unique, world-class cyber security expertise and technical assurance of sufficient scope and quality as to be appropriate for the current stage in the assurance framework around Huawei in the UK ii. However, Huawei’s processes continue to fall short of industry good practice and make it difficult to provide long term assurance. The lack of progress in remediating these is disappointing. NCSC and Huawei are working with the network operators to develop a long-term solution, regarding the lack of lifecycle management around third party components, a new strategic risk to the UK telecommunications networks. Significant work will be required to remediate this issue and provide interim risk management.

iii. The HCSEC Oversight Board is assured that the Ernst & Young Audit Report provides important, external reassurance that the arrangements for HCSEC’s operational independence from Huawei Headquarters is operating robustly and effectively, and in a manner consistent with the 2010 arrangements between the Government and the company. The issue identified was rated as low risk and two further advisory issues were identified.

5.3 Overall therefore, the Oversight Board has concluded that in the year 2017-2018, HCSEC fulfilled its obligations in respect of the provision of security and engineering assurance artefacts to the NCSC and the UK operators as part of the strategy to manage risks to UK national security from Huawei’s involvement in the UK’s critical networks. However, the execution of the strategy exposed a number of risks which will need significant additional work and management. The Oversight Board will need to pay attention to these issues.”

The qualified nature of the HCSEC reports has led to come commentators to offer strong support to the Australian bans on Huawei participation in Australian 5G. This is particularly the case with the ASPI International Cyber Policy Centre. The Centre’s Tom Uren says that the contents of the four HCSEC oversight board annual reports (2015, 2016, 2017 and 2018) “show that it is very difficult indeed” to “assess products to make sure they won’t be used to spy on us”.

However, the underlying issue is broader than Huawei and 5G. A 2018 book by Olav Lysne concludes that:

“Industrialized nation states are currently facing an almost impossible dilemma. On one hand, the critical functions of their societies, such as the water supply, the power supply, transportation, healthcare, and phone and messaging services, are built on top of a huge distributed digital infrastructure. On the other hand, equipment for the same infrastructure is made of components constructed in countries or by companies that are inherently not trusted. In this book, we have demonstrated that verifying the functionality of these components is not feasible given the current state of the art. The security implications of this are enormous. The critical functions of society mentioned above are so instrumental to our well-being that threats to their integrity also threaten the integrity of entire nations. The procurement of electronic equipment for national infrastructures therefore represents serious exposure to risk and decisions on whom to buy equipment from should be treated accordingly. The problem also has an industrial dimension, in that companies fearing industrial espionage or sabotage should be cautious in choosing from whom to buy electronic components and equipment. Honest providers of equipment and components see this problem from another angle. Large international companies have been shut out of entire markets because of allegations that their equipment cannot be trusted. For them, the problem is stated differently: How can they prove that the equipment they sell does not have hidden malicious functionality? We have seen throughout the chapters of this book that we are currently far from being able to solve the problem from that angle as well. This observation implies that our problem is not only a question of security but also a question of impediments to free trade. Although difficult, the question of how to build verifiable trust in electronic equipment remains important and its importance shows every sign of growing.”

The basic technical reason for Australia banning Huawei has been put forward by the head of its Signals Directorate: “5G is not just fast data, it is also high-density connection of devices – human to human, human to machine and machine to machine – and finally it is much lower signal latency or speed of response. Historically, we have protected the sensitive information and functions at the core of our telecommunications networks by confining our high-risk vendors to the edge of our networks. But the distinction between core and edge collapses in 5G networks. That means that a potential threat anywhere in the network will be a threat to the whole network. In consultation with operators and vendors, we worked hard this year to see if there were ways to protect our 5G networks if high-risk vendor equipment was present anywhere in these networks. At the end of this process, my advice was to exclude high-risk vendors from the entirety of evolving 5G networks.”

The technical issues of 5G are very complex and there is no universal agreement in any country about the introduction and operation of networks. International technical standards are still being developed.  Initially, many basic 5G features will be delivered in most cases by upgraded 4G infrastructure, but getting the most out of 5G – in terms of speed and capacity – will require significant new investment in telecommunications infrastructure.

A controversial US proposal to build secure 5G as a “single, inherently protected, information transportation super highway” was produced by members of the US security establishment in early 2018 – and found its way into the public arena. The document says that presently “data traverses cyberspace through a patchwork transport layer constructed through an evolutionary process as technology matured”. “Measures to secure and protect data and information result in an ‘overhead’ that affects network performance – they reduce throughput, increase latency, and result in an inherently and inefficient and unreliable construct. Additionally, the framework under which access and services are allocated is suboptimal, yielding incomplete and redundant networks. Without a concerted effort to reframe and reimagine the information space, America will continue on the same trajectory – chasing cyber adversaries in an information environment where security is scarce.”

It goes on to say that “the advent of ‘secure’ network technology and the move to 5G presents an opportunity to create a completely new framework.” “Whoever leads in technology and market share for 5G development will have a tremendous advantage towards ushering in the massive Internet of Things, machine learning, AI, and thus the commanding heights of the information domain.” “The transformative nature of 5G is its ability to enable the massive Internet of Things.” “Using efforts like China Manufacturing 2025 (CM2025) and the 13th Five Year Plan, China has assembled the basic components required for winning the AI arms race.”

While the proposal for a such extensive government involvement in US 5G infrastructure seems to have been rejected, it does indicate the level of attention being focused on the issue.

The Russian Ministry of Communications is advocating that private Russian telecommunications companies share much of the 5G infrastructure, which may to some degree allow a more secure network to be built. However, this does not solve the problem of where to source the equipment.

What should Russia do if the concerns about Huawei and Chinese technology more generally start to lead to the formation of an anti-Chinese technology based economic bloc?

There is little reason to believe Russia will be any better than Western countries in evaluating the security related aspects of Chinese technology, and there would be a strong case for Russia to follow the lead of Australia, the UK, USA etc. However, there would be several arguments against such a course of action.

Firstly, Russia will not want to jeopardize its present good political relationship with China. Apart from energy sales the economic relationship between Russia and China is not strong, however geography means that Russia has a huge stake in the political relationship.

Secondly, if it is possible for Huawei and other Chinese companies to do the harmful things that are claimed then presumably non-Chinese suppliers could also do the same to Russia at the request (or demand) of their country’s security agencies. While Western commentators make much of China’s June 2017 National Intelligence Law that obliges “all organizations and citizens” to “support, cooperate and collaborate in national intelligence work”, Western high-tech companies would almost certainly do the same when it comes to Russia given its very poor image in those countries and the perceived Russian threat to those countries.

Thirdly, at a purely technical level there is nothing to suggest that Russia could build 5G infrastructure without importing most of the equipment. While Russia has a solid reputation in the software field, Russian manufacturing capacity and quality is not high. Russia’s efforts to promote the high-tech sector from the top have not been particularly successful. Even China is very dependent on crucial imported 5G components.

Fourthly, my September 2016 report on the NTI suggested that Russia needed to put more emphasis on using available digital technology rather than trying to develop new leading-edge products. In early 2017, the Russian government announced its “Strategy for the Development of the Information Society in the Russian Federation for 2017-2030” While much can be done using existing 4G infrastructure, a good 5G network will be necessary well before 2030 to maximize the benefits of the strategy as well as take best advantage of any NTI successes.

As things now stand, Russia is likely to use Chinese Huawei (and other Chinese) hardware while attempting to ensure that Russian software is used wherever possible. However, as already noted, this will be no easy task.

It is difficult to avoid the conclusion that when it comes to 5G and national security, Russia is between a rock and a hard-place. It has neither the 5G infrastructure manufacturing capacity of the US and China, nor any real friends that are capable of helping it.

Visiting Professor, School of Asian Studies within the Higher School of Economics National Research University, Moscow, where I teach the entire Master’s Degree module: “Russia’s Asian Foreign Policy” (covering Russian relations with all Asian countries). ALSO, Professor of International Business, Baikal School of BRICS, Irkutsk National Research Technical University (teach mainly Chinese students, with a particular emphasis on the technology sector).

Science & Technology

Digital Child’s Play: protecting children from the impacts of AI

Published

on

UNICEF has developed policy guidance to protect children from the potential impacts of AI. UNICEF/ Diefaga

Artificial intelligence has been used in products targeting children for several years, but legislation protecting them from the potential impacts of the technology is still in its infancy. Ahead of a global forum on AI for children, UN News spoke to two UN Children’s Fund (UNICEF) experts about the need for improved policy protection.

Children are already interacting with AI technologies in many different ways: they are embedded in toys, virtual assistants, video games, and adaptive learning software. Their impact on children’s lives is profound, yet UNICEF found that, when it comes to AI policies and practices, children’s rights are an afterthought, at best.

In response, the UN children’s agency has developed draft Policy Guidance on AI for Children to promote children’s rights, and raise awareness of how AI systems can uphold or undermine these rights.

Conor Lennon from UN News asked Jasmina Byrne, Policy Chief at the UNICEF Global Insights team, and Steven Vosloo, a UNICEF data, research and policy specialist, about the importance of putting children at the centre of AI-related policies.
AI Technology will fundamentally change society.

Steven Vosloo At UNICEF we saw that AI was a very hot topic, and something that would fundamentally change society and the economy, particularly for the coming generations. But when we looked at national AI strategies, and corporate policies and guidelines, we realized that not enough attention was being paid to children, and to how AI impacts them. 

So, we began an extensive consultation process, speaking to experts around the world, and almost 250 children, in five countries. That process led to our draft guidance document and, after we released it, we invited governments, organizations and companies to pilot it. We’re developing case studies around the guidance, so that we can share the lessons learned.

Jasmina Byrne AI has been in development for many decades. It is neither harmful nor benevolent on its own. It’s the application of these technologies that makes them either beneficial or harmful.

There are many positive applications of AI that can be used in in education for personalized learning. It can be used in healthcare, language simulation and processing, and it is being used to support children with disabilities.

And we use it at UNICEF. For example, it helps us to predict the spread of disease, and improve poverty estimations. But there are also many risks that are associated with the use of AI technologies. 

Children interact with digital technologies all the time, but they’re not aware, and many adults are not aware, that many of the toys or platforms they use are powered by artificial intelligence. That’s why we felt that there has to be a special consideration given to children and because of their special vulnerabilities.

Privacy and the profit motive

Steven Vosloo The AI could be using natural language processing to understand words and instructions, and so it’s collecting a lot of data from that child, including intimate conversations, and that data is being stored in the cloud, often on commercial servers. So, there are privacy concerns.

We also know of instances where these types of toys were hacked, and they were banned in Germany, because they were considered to be safe enough.

Around a third of all online users are children. We often find that younger children are using social media platforms or video sharing platforms that weren’t designed with them in mind.

They are often designed for maximum engagement, and are built on a certain level of profiling based on data sets that may not represent children.

Predictive analytics and profiling are particularly relevant when dealing with children: AI may profile children in a way that puts them in a certain bucket, and this may determine what kind of educational opportunities they have in the future, or what benefits parents can access for children. So, the AI is not just impacting them today, but it could set their whole life course on a different direction.

Jasmina Byrne Last year this was big news in the UK. The Government used an algorithm to predict the final grades of high schoolers. And because the data that was input in the algorithms was skewed towards children from private schools, their results were really appalling, and they really discriminated against a lot of children who were from minority communities. So, they had to abandon that system. 

That’s just one example of how, if algorithms are based on data that is biased, it can actually have a really negative consequences for children.

‘It’s a digital life now’

Steven Vosloo We really hope that our recommendations will filter down to the people who are actually writing the code. The policy guidance has been aimed at a broad audience, from the governments and policymakers who are increasingly setting strategies and beginning to think about regulating AI, and the private sector that it often develops these AI systems.

We do see competing interests: the decisions around AI systems often have to balance a profit incentive versus an ethical one. What we advocate for is a commitment to responsible AI that comes from the top: not just at the level of the data scientist or software developer, from top management and senior government ministers.

Jasmina Byrne The data footprint that children leave by using digital technology is commercialized and used by third parties for their own profit and for their own gain. They’re often targeted by ads that are not really appropriate for them. This is something that we’ve been really closely following and monitoring.

However, I would say that there is now more political appetite to address these issues, and we are working to put get them on the agenda of policymakers.

Governments need to think and puts children at the centre of all their policy-making around frontier digital technologies. If we don’t think about them and their needs. Then we are really missing great opportunities.

Steven Vosloo The Scottish Government released their AI strategy in March and they officially adopted the UNICEF policy guidance on AI for children. And part of that was because the government as a whole has adopted the Convention on the Rights of the Child into law. Children’s lives are not really online or offline anymore. And it’s a digital life now.

Continue Reading

Science & Technology

How digital technology and innovation can help protect the planet

Published

on

As a thick haze descended over New Delhi last month, air quality monitors across the Indian capital began to paint a grim picture.

The smoke, fed by the seasonal burning of crops in northern India, was causing levels of the toxic particle PM 2.5 to spike, a trend residents could track in real time on the Global Environment Monitoring System for Air (GEMS Air) website.

By early November, GEMS Air showed that concentrations of PM 2.5 outside New Delhi’s iconic India Gate were ‘hazardous’ to human health. In an industrial area north of the Indian capital, the air was 50 times more polluted.

GEMS Air is one of several new digital tools used by the United Nations Environment Programme (UNEP) to track the state of the environment in real time at the global, national and local levels. In the years to come, a digital ecosystem of data platforms will be crucial to helping the world understand and combat a host of environmental hazards, from air pollution to methane emissions, say experts.

“Various private and public sector actors are harnessing data and digital technologies to accelerate global environmental action and fundamentally disrupt business as usual,” says David Jensen, the coordinator of UNEP’s digital transformation task force.

“These partnerships warrant the attention of the international community as they can contribute to systemic change at an unprecedented speed and scale.”

The world is facing what United Nations Secretary-General António Guterres has called a triple planetary crisis of climate change, pollution and biodiversity loss. Experts say averting those catastrophes and achieving the Sustainable Development Goals will require fundamentally transforming the global economy within a decade. It’s a task that would normally take generations. But a range of data and digital technologies are sweeping the planet with the potential to promote major structural transformations that will enhance environmental sustainability, climate action, nature protection and pollution prevention.

A new age

UNEP is contributing to that charge through a new programme on Digital Transformation and by co-championing the Coalition for Digital Environmental Sustainability as part of the Secretary-General’s Digital Cooperation Roadmap.

UNEP studies show that for 68 per cent of the environment-related Sustainable Development Goal indicators, there is not enough data to assess progress. The digital initiatives leverage technology to halt the decline of the planet and accelerate sustainable finance, products, services, and lifestyles.

GEMS air was among the first of those programmes. Run by UNEP and Swiss technology company IQAir, it is the largest air pollution network in the world, covering some 5,000 cities. In 2020, over 50 million users accessed the platform and its data is being streamed into digital billboards to alert people about air quality risks in real time. In the future, the program aims to extend this capability directly into mobile phone health applications.

Building on lessons learned from GEMS Air, UNEP has developed three other lighthouse digital platforms to showcase the power of data and digital technologies, including cloud computing, earth observation and artificial intelligence.

Managing freshwater

One is the Freshwater Ecosystem Explorer, which provides a detailed look at the state of lakes and rivers in every country on Earth.

The fruit of a partnership between UNEP, the European Commission’s Joint Research Centre and Google Earth Engine, it provides free and open data on permanent and seasonal surface waters, reservoirs, wetlands and mangroves.

“It is presented in a policy-friendly way so that citizens and governments can easily assess what is actually happening to the world’s freshwater resources,” says Stuart Crane, a UNEP freshwater expert. “That helps countries track their progress towards the achievement of Sustainable Development Goal Target 6.6.”

Data can be visualized using geospatial maps with accompanying informational graphics and downloaded at national, sub-national and river basin scales. Data are updated annually and depict long-term trends as well as annual and monthly records on freshwater coverage.

Combating climate change

UNEP is also using data-driven decision making to drive deep reductions in methane emissions through the International Methane Emissions Observatory (IMEO). Methane is a potent greenhouse gas, responsible for at least a quarter of today’s global warming.

The observatory is designed to shine a light on the origins of methane emissions by collecting data from various sources, including satellites, ground-based sensors, corporate reporting and scientific studies.

The Global Methane Assessment published by UNEP and the Climate and Clean Air Coalition (CCAC) found that cutting human-caused methane by 45 per cent this decade would avoid nearly 0.3°C of global warming by the 2040s, and help prevent 255,000 premature deaths, 775,000 asthma-related hospital visits, and 26 million tonnes of crop losses globally.

“The International Methane Emissions Observatory supports partners and institutions working on methane emissions reduction to scale-up action to the levels needed to avoid the worst impacts of climate change,” says Manfredi Caltagirone, a UNEP methane emissions expert.

Through the Oil and Gas Methane Partnership 2.0, the methane observatory works with petroleum companies to improve the accuracy and transparency of methane emissions reporting. Current member companies report assets covering over 30 per cent of oil and gas production globally. It also works with the scientific community to fund studies that provide robust, publicly available data.

Preserving nature

UNEP is also backing the United Nations Biodiversity Lab 2.0, a free, open-source platform that features data and more than 400 maps highlighting the extent of nature, the effects of climate change, and the scale of human development. Such spatial data help decision-makers put nature at the heart of sustainable development by allowing them to visualize the natural systems that hold back natural disasters, store planet-warming gasses, like carbon dioxide, and provide food and water to billions.

More than 61 countries have accessed data on the UN Biodiversity Lab as part of their national reporting to the Convention on Biological Diversity, an international accord designed to safeguard wildlife and nature. Version 2.0 of the lab was launched in October 2021 as a partnership between UNDP, UNEP’s World Conservation Monitoring Centre, the Convention on Biodiversity Secretariat and Impact Observatory. 

All of UNEP’s digital platforms are being federated into UNEP’s World Environment Situation Room, a digital ecosystem of data and analytics allowing users to monitor progress against key environmental Sustainable Development Goals and multi-lateral agreements at the global, regional and national levels.

“The technical ability to measure global environmental change—almost in real time—is essential for effective decision making,” says Jensen.

“It will have game-changing implications if this data can be streamed into the algorithms and platforms of the digital economy, where it can prompt users to make the personal changes so necessary to preserving the natural world and achieving net zero.”

UNEP

Continue Reading

Science & Technology

Housing needs, the Internet and cyberspace at the forefront in the UK and Italy

Published

on

Modern construction methods and smart technology can revolutionise the building process and the way we live.

Population growth and demographic changes have led to a global housing shortage. According to research carried out by the Heriot-Watt University National Housing Federation and by the Homeless Charity Crisis Organisation, the UK will face a shortage of four million housing units by the end of 2031. This means that approximately 340,000 new housing units will need to be built each year. The houses built shall meet the demands of home automation and increasing environmental constraints.

Traditional building technology is unlikely to meet this demand. It is relatively expensive and too slow in fulfilling the necessary procedures and complying with all rules and regulations. Furthermore, the quality and capabilities of traditional construction methods are also limited. The only solution is modular production based on the principles of factory automation. This solution uses cordless and battery-free controls and sensors to perfectly integrate with home automation.

Modular buildings are based on a combination of construction methods called Modern Method of Construction (MMC). They include the use of panelling systems and components, such as roof and floor boxes, precast concrete foundation components, prefabricated wiring, mechanical engineering composites and innovative technologies.

With the opening of several factories, the UK has started to use the MMC to build prefabricated and fully equipped houses in modular form, which can be loaded onto trucks for transport across the country. This type of on-site assembly enables the house to be completed in days rather than months, thus reducing costs significantly. Modular buildings have become popular in Europe. In Italy, a pioneering company is the RI Group of Trepuzzi (Lecce), which is also operating in the fields of logistics and services and building health care facilities, field hospitals and public offices, which are cost-effective and quick to construct.

The impact of modular construction is expected to be significant and factories producing up to five thousand houses per year could become the best builders in the sector.

The construction standards of these new technology houses are higher than those of traditional houses. Thanks to better insulation, the electricity bill could be only half that of a traditional house.

Modular houses have kitchens and bathrooms, and are equipped with power and lighting via power cables, which are also modular, and wireless controls, in addition to the increasingly important network and telecommunications infrastructure.

Structural and modular wiring are derived from commercial electrical and industrial installations to ensure efficient and minimal electrical installation work. As technology changes, this standard installation is adaptable and offers a high degree of flexibility.

Experience in industrial and commercial construction shows that traditional fixtures are labour-intensive, rather rigid and still expensive. In contrast, on-site prefabricated modular cabling and the IDC system combined with wireless controllers and sensors can be fully installed at low cost. These are proven technologies and are moving from commercial to domestic use scenarios.

With the help of CAD support for modular cabling, all power cables are laid in the ceiling or wall space. The installation of wireless energy harvesting equipment simplifies the installation process as no switches and duct installation are required. For the first electrical fixing through the wall, the cable takes less time because there is no need to coordinate the position of the switch with the wall bolts. The level of dependency of on-site installation activities has also been reduced. Sensors, switches and wireless energy harvesting controls can be installed anywhere in the building, even in hard-to-reach areas.

After installation, the principle of energy harvesting will be used. Switches and sensors are powered by the surrounding environment and there is no need to replace old batteries and other maintenance equipment. Moreover, this flexibility and this reliability enable the system to be expanded at any time.

The modular construction technology enables it to adapt to various types of houses and meet the needs of today’s life through flexible shapes and various exterior decorations. This is not exactly the same as the old prefabricated houses, “granted” in Italy to earthquake victims who have been waiting for years for a decent, civilised home.

By providing a range of traditional and modern exterior decorative panels, the roofline can also be customised to suit local customs and architecture.

Through the combination of innovative product technology and good design, the aim of the smart home is to provide security and comfort. The usual requirement is to place the light switch and dimmer (or potentiometer) in the most convenient place. Driven by the kinetic energy collected by the switch itself, they can be placed anywhere.

They do not require wiring, but can send wireless signals to the receiver inside or near lights or DIN-rail mounts (German Institute for Standardisation). In addition, there is no need to use batteries and no need to replace them. This saves all the inconvenience and environmental risks that can be caused by replacing batteries.

Since this type of equipment has reached a wide range of applications, lighting and home entertainment will choose battery-free products. Besides controlling brightness and colour, self-powered switches can also be used to control sound systems or blinds. A key application of the smart home is the switch that can turn off/on devices that do not use traditional electricity when leaving or coming back home.

Energy harvesting technology also supports other sensor-based applications. For example, self-powered sensors can be wirelessly connected to an intruder alarm. Furthermore, by installing light-activated touch sensors on windows, lighting and heating can be turned off when no one is at home.

Another source of energy is the temperature difference between the heating radiator and the surrounding environment. For example, this energy harvesting enables a self-powered heating valve to perform heating control via a room temperature controller according to specific conditions.

From factories to offices, from multifunctional buildings to smart homes, wireless energy harvesting technology has been tested in approximately one million buildings worldwide. Most sensors, switches and other self-powered energy-harvesting devices can communicate at a distance of up to 30 metres in a building and meet the EnOcean international wireless standard, which encrypts messages below 1 GHz by sending a short message.

There are also some self-powered devices that integrate EnOcean energy harvesting technology and can communicate directly with the lights via the well-known Bluetooth or Zigbee (wireless communication standard based on the IEEE 802.15.4 specification, maintained by the ZigBee Alliance). This makes it possible to use green, battery-free switches and solar sensors to flexibly control other applications, such as LED lights or speakers.

Now that wireless sensors for energy harvesting can frame data at home, it will be a huge step forward to aggregate information and perform useful analysis. They process data through the Internet of Things (IoT), which refers to the path in technological development whereby, through the Internet, potentially every object of everyday life can acquire its own identity in cyberspace. As mentioned above, the IoT is based on the idea of “smart” items which are interconnected to exchange the information they possess, collect and/or process.

It also uses Artificial Intelligence (AI) to keep track of living patterns and activities in modular homes. Energy analysis is an application that can currently help homeowners further reduce energy consumption through AI.

Looking to the future, the combination of the IoT and AI will bring many benefits. Geographical data, weather and climate information, as well as activities, water and energy consumption and other factors will be very useful for planners, building organisations, builders and landlords.

Perceived architecture represents the next generation of sustainable building systems. Smart buildings will soon be able to integrate the IoT devices on their own, as well as generate large amounts of information and use it to optimise buildings. This provides a whole new dimension to the service and to the business and home economics model.

This is particularly relevant for the ageing population, as these smart technologies can radically change the lifestyles of the elderly people and their families. They are expected to bring transformative benefits in terms of health and well-being.

The key elements of such a home include smart, non-invasive and safe and secure connections with friends, family members, general practitioners, nurses and health care professionals, involving the care of residents. Technology based on battery-free sensors connected to the IoT will help prevent accidents at home, resulting from kitchens utensils and overflowing toilets, etc., and keep up with residents’ interactions with healthcare professionals.

Continue Reading

Publications

Latest

china india pakistan china india pakistan
East Asia38 mins ago

U.S.- China Strategic Competition in The East Asia

East Asia has been the most dynamic region where development has been internationally recognized. The regional politics of the region...

Arts & Culture49 mins ago

UN Geneva open exhibition “The World In Faces”

On November 24, United Nations Geneva hosts “The World in Faces”, an exhibition of photos by the renowned Russian photographer...

Economy3 hours ago

A Good Transport System Supercharges the Economic Engine

The infrastructure bill in the U.S. has been signed into law.  At the American Society of Civil Engineers (ASCE), they...

Science & Technology5 hours ago

Digital Child’s Play: protecting children from the impacts of AI

Artificial intelligence has been used in products targeting children for several years, but legislation protecting them from the potential impacts...

Middle East7 hours ago

Testing the waters: Russia explores reconfiguring Gulf security

Russia hopes to blow new life into a proposal for a multilateral security architecture in the Gulf, with the tacit...

Reports9 hours ago

People are increasingly worried about inequalities but divided on how to address them

For a recovery from the COVID-19 crisis that is strong, sustainable but also fair, it will be key to tackle...

business-technology business-technology
Tech News11 hours ago

Industrial innovation to accelerate transitions towards greener and digital economies

In the context of the 8th European Conference on Corporate R&D and Innovation (CONCORDI), 2021 – Industrial innovation for competitive sustainability,...

Trending