Connect with us

Science & Technology

Kuwaiti Experts Use Nuclear Technology to Study the Marine Environment

Published

on

Lamya Al-Musallam, a senior research associate at KISR, checks the pH level in the tanks, which is controlled by a system provided by the IAEA. (Photo: Dean Calma/IAEA)

In the face of climate change and increased industrial activity, scientists in Kuwait are using nuclear science to address challenges to the marine environment, with the assistance of the IAEA.

“Kuwait is facing the effect of climate change, ocean acidification, pollution from the oil and shipping industry, power and desalination activities,” said Nader Al-Awadi, the Executive Commissioner for International Cooperation at the Kuwait Institute of Scientific Research (KISR), adding that these factors also impact the marine environment. “Kuwait is covering a broad range of techniques to study the marine environment and the application of nuclear technology is among the core methods.”

Ocean acidification: the other CO2 problem

With the establishment of a large-scale facility to carry out research on the acidification of oceans – a result of increased amounts of carbon dioxide entering the ocean, – investigations are conducted on different marine organisms. Experts are making regular measurements of temperature and water acidity levels, and looking at how marine life is likely to respond to such changes in coming decades, said Saif Uddin Iqbal Uddin, a senior research scientist at KISR.

Potential impacts of ocean acidification and ocean warming include the degradation or complete loss of critical habitats, such as sea grass beds and coral reefs, he said. Nuclear and isotopic techniques are utilized to understand past conditions of ocean warming and acidification, and to predict future responses of marine organisms, such as mussels, oysters and corals, under changing conditions.

The Gulf waters provide a natural lab and ideal environment to study how marine life might adapt to ocean changes. “Despite huge temperature fluctuations from 8 degrees Celsius to 36, corals are surviving,” he highlighted. At the same time, they are becoming more brittle due to ocean acidification. Under an IAEA project, studies focus on the effect of ocean acidification on calcification of key coral species.

Another important research area is the evaluation of the uptake of radioactivity and marine pollutants by marine sediments under ocean acidification. The seabed is a repository of contaminants and it has more pollution load than seawater, explained Saif Uddin.

Early warning systems

The use of early warning systems to assess radiation levels is another important area of research. In cooperation with the IAEA, Kuwait’s experts have established a marine radioactive assessment network, which compares the radiation levels to baseline radioactive levels established in the 1990s, said Saif Uddin, adding that regular assessments are undertaken to check any impact on the marine environment. Data demonstrates that radioactivity levels are normal, and marine life is safe.

Gamma ray detectors are deployed at sea in an array of locations and studies are conducted on water entering the Gulf to detect and, in conjunction with hydrodynamic measurements and modelling, evaluate if there is any radioactivity which can impact seawater desalination, which is the source of freshwater supply in the country. The IAEA support includes providing laboratory equipment as well as training of staff in gamma and alpha spectrometry, all of which are used to measure radioactivity in the marine environment.

Other IAEA supported projects relate to the monitoring of pollutants in the marine environment and how these have changed since the first Gulf war in 1990.

Nuclear technology is also used for seafood safety, for example, to monitor biotoxins produced by microscopic algae, known as harmful algal blooms (HABs). Factors such as surface water temperature, the circulation of wind and water, the natural movement of nutrient rich waters towards the surface or the accumulation of agricultural run-off into the sea can trigger algal blooms, which can sometimes include toxic species. These toxins then enter the food chain and present a danger for people and threaten the livelihood of communities depending on fisheries.

This is where using nuclear techniques such as the receptor binding assay to track biotoxins from HABs is useful. Under an IAEA supported project, this technique will be utilized for the detection of toxins in seafood. This information will be very important for hazard preparedness and as early warning, Saif Uddin said.

IAEA

Continue Reading
Comments

Science & Technology

Iran among five pioneers of nanotechnology

Published

on

Prioritizing nanotechnology in Iran has led to this country’s steady placement among the five pioneers of the nanotechnology field in recent years, and approximately 20 percent of all articles provided by Iranian researchers in 2020 are relative to this area of technology.

Iran has been introduced as the 4th leading country in the world in the field of nanotechnology, publishing 11,546 scientific articles in 2020.

The country held a 6 percent share of the world’s total nanotechnology articles, according to StatNano’s monthly evaluation accomplished in WoS databases.

There are 227 companies in Iran registered in the WoS databases, manufacturing 419 products, mainly in the fields of construction, textile, medicine, home appliances, automotive, and food.

According to the data, 31 Iranian universities and research centers published more than 50 nano-articles in the last year. 

In line with China’s trend in the past few years, this country is placed in the first stage with 78,000 nano-articles (more than 40 percent of all nano-articles in 2020), and the U.S. is at the next stage with 24,425 papers. These countries have published nearly half of the whole world’s nano-articles.

In the following, India with 9 percent, Iran with 6 percent, and South Korea and Germany with 5 percent are the other head publishers, respectively.

Almost 9 percent of the whole scientific publications of 2020, indexed in the Web of Science database, have been relevant to nanotechnology.

There have been 191,304 nano-articles indexed in WoS that had to have a 9 percent growth compared to last year. The mentioned articles are 8.8 percent of the whole produced papers in 2020.

Iran ranked 43rd among the 100 most vibrant clusters of science and technology (S&T) worldwide for the third consecutive year, according to the Global Innovation Index (GII) 2020 report.

The country experienced a three-level improvement compared to 2019.

Iran’s share of the world’s top scientific articles is 3 percent, Gholam Hossein Rahimi She’erbaf, the deputy science minister, has announced.

The country’s share in the whole publications worldwide is 2 percent, he noted, highlighting, for the first three consecutive years, Iran has been ranked first in terms of quantity and quality of articles among Islamic countries.

Sourena Sattari, vice president for science and technology has said that Iran is playing the leading role in the region in the fields of fintech, ICT, stem cell, aerospace, and is unrivaled in artificial intelligence.

From our partner Tehran Times

Continue Reading

Science & Technology

Free And Equal Internet Access As A Human Right

Published

on

Having internet access in a free and equal way is very important in contemporary world. Today, there are more than 4 billion people who are using internet all around the world. Internet has become a very important medium by which the right to freedom of speech and the right to reach information can be exercised. Internet has a central tool in commerce, education and culture.

Providing solutions to develop effective policies for both internet safety and equal Internet access must be the first priority of governments. The Internet offers individuals power to seek and impart information thus states and organizations like UN have important roles in promoting and protecting Internet safety. States and international organizations play a key role to ensure free and equal Internet access.

The concept of “network neutrality is significant while analyzing equal access to Internet and state policies regulating it. Network Neutrality (NN) can be defined as the rule meaning all electronic communications and platforms should be exercised in a non-discriminatory way regardless of their type, content or origin. The importance of NN has been evident in COVID-19 pandemic when millions of students in underdeveloped regions got victimized due to the lack of access to online education.

 Article 19/2 of the International Covenant on Civil and Political Rights notes the following:

“Everyone shall have the right to freedom of expression; this right shall include freedom to seek, receive and impart information and ideas of all kinds, regardless of frontiers either orally, in writing or in print, in the form of art, or through any other media of his choice.”

Internet access and network neutrality directly affect human rights. The lack of NN undermines human rights and causes basic human right violations like violating freedom of speech and freedom to reach information. There must be effective policies to pursue NN. Both nation-states and international organizations have important roles in making Internet free, safe and equally reachable for the people worldwide. States should take steps for promoting equal opportunities, including gender equality, in the design and implementation of information and technology. The governments should create and maintain, in law and in practice, a safe and enabling online environment in accordance with human rights.

It is known that, the whole world has a reliance on internet that makes it easy to fullfill basic civil tasks but this is also threatened by increasing personal and societal cyber security threats. In this regard, states must fulfill their commitment to develop effective policies to attain universal access to the Internet in a safe way.

 As final remarks, it can be said that, Internet access should be free and equal for everyone. Creating effective tools to attain universal access to the Internet cannot be done only by states themselves. Actors like UN and EU have a major role in this process as well.

Continue Reading

Science & Technology

Future Energy Systems Need Clear AI Boundaries

Published

on

Today, almost 60% of people worldwide have access to the Internet via an ever-increasing number of electronic devices. And as Internet usage grows, so does data generation.

Data keeps growing at unprecedented rates, increasingly exceeding the abilities of any human being to analyse it and discover its underlying structures.

Yet data is knowledge. This is where artificial intelligence (AI) comes in. Today’s high-speed computing systems can “learn” from experience and, thus, effectively replicate human decision-making.

Besides holding its own among global chess champions, AI aids in converting unstructured data into actionable knowledge. At the same time, it enables the creation of even more insightful AI – a win-win for all. However, this doesn’t happen without challenges along the way.

Commercial uses of AI have expanded steadily in recent years across finance, healthcare, education and other sectors. Now, with COVID-19 lockdowns and travel restrictions, many countries have turned to innovative technologies to halt the spread of the virus.

The pandemic, therefore, has further accelerated the global AI expansion trend.

Energy systems need AI, too.

Rapidly evolving smart technology is helping to make power generation and distribution more efficient and sustainable. AI and the Big Data that drives it have become an absolute necessity.  Beyond just facilitating and optimising, these are now the basic tools for fast, smart decision making.

With the accelerating shift to renewable power sources, AI can help to reduce operating costs and boost efficiency. Crucially, AI-driven “smart grids” can manage variable supply, helping to maximise the use of solar and wind power.

Read more in IRENA’s Innovation Toolbox.

Risks must be managed to maximise the benefits.

AI usage in the energy sector faces expertise-related and financial constraints.

Decision makers, lacking specialised knowledge, struggle to appreciate the wide-ranging benefits of smart system management. In this respect, energy leaders have proven more conservative than those in other sectors, such as healthcare.

Meanwhile, installing powerful AI tools without prior experience brings considerable risks. Data loss, poor customisation, system failures, unauthorised access – all these errors can bring enormous costs.

Yet like it or not, interconnected devices are on the rise.

What does this all mean for the average consumer?

Smart phones, smart meters and smart plugs, connected thermostats, boilers and smart charging stations have become familiar, everyday items. Together, such devices can form the modern “smart home”, ideally powered by rooftop solar panels.

AI can help all of us, the world’s energy consumers, become prosumers, producing and storing our own energy and interacting actively with the wider market. Our data-driven devices, in turn, will spawn more data, which helps to scale up renewables and maximise system efficiency.

But home data collection raises privacy concerns. Consumers must be clearly informed about how their data is used, and by whom. Data security must be guaranteed. Consumer privacy regulations must be defined and followed, with cybersecurity protocols in place to prevent data theft.

Is the future of AI applications in energy bright?

Indeed, the outlook is glowing, but only if policy makers and societies strike the right balance between innovation and risk to ensure a healthy, smart and sustainable future.

Much about AI remains to be learned. As its use inevitably expands in the energy sector, it cannot be allowed to work for the benefit of only a few. Clear strategies need to be put in place to manage the AI use for the good of all.

IRENA

Continue Reading

Publications

Latest

Trending