Connect with us

Science & Technology

A New Circular Vision for Electronics

Published

on

Authors: Guy Ryder and Houlin Zhao*

Humankind’s insatiable demand and consumption of electronic devices is creating the world’s fastest growing waste stream. Some forms are growing exponentially. The United Nations are calling it a tsunami of e-waste.”

While more electronic devices are part of the problem, they also can be a big part of the solution. A more digital and connected world will help us accelerate progress towards the United Nations’ Sustainable Development Goals (SDGs), offering unprecedented opportunities for emerging economies.

Get it right and we will see a lot less of our precious minerals, metals and resources dumped into landfill. The benefit to industry, workers, as well as to the health of people and the environment, could be enormous. It is crucial we swiftly employ a more circular vision in this sector.

That’s why tackling this issue head-on is now seen as a crucial task for a number of global agencies, including the International Telecommunication Union (ITU), International Labour Organization (ILO),  United Nations Environment Programme (UNEP) and other members of the E-waste Coalition. ITU member States, for instance, recently set a target to increase the global e-waste recycling rate to 30%.

The economic arguments are strong. If we look at the material value of our spent devices globally, this amounts to $62.5 billion, three times more than the annual output of the world’s silver mines, according to data in the new Global E-Waste Report. Over 120 countries have less GDP each year than the value of our growing pile of global e-waste.

By harvesting this valuable resource, we are looking at substantially less carbon-dioxide emissions when compared to mining the earth’s crust for fresh minerals. It makes sense too: there is 100 times more gold in a tonne of mobile phones than in a tonne of gold ore.

Extending the life of electronic products and re-using electrical components brings an even larger economic benefit, as working devices are certainly worth more than the materials they contain. A circular electronics system, one in which resources are not extracted, used and wasted, but re-used in countless ways creates decent, sustainable jobs and retains more value in the industry.

If ocean plastic pollution was one of the major environmental challenges we finally woke up to in 2018, the ebb and flow of public opinion could and should turn to electronic waste in 2019. The numbers are astounding: 50 million tonnes of e-waste are produced each year. Unchecked, this amount could more than double by 2050 to 120 million tonnes.

It is hard to imagine even 50 million tonnes, yet this is equivalent in weight to all the commercial aircraft we have ever built throughout history or 4,500 Eiffel Towers, enough to cover an area the size of Manhattan. And that’s the equivalent of just one year’s worth of e-waste we create.

This mushrooming pile of screens, cables, chips and motherboards is fuelled by our love of devices, many connected to the internet. They now exceed the number of humans on the planet, and are projected to grow to 25-50 billion by 2020, reflecting plummeting costs and rising demand.

Only 20% of global e-waste is formally recycled. The vast majority, 80%, is often incinerated or dumped in landfill. Many thousands of tonnes also find their way around the world to be pulled apart by hand or burned by the world’s poorest workers. This crude form of urban mining has consequences for people’s well-being and creates untold pollution.

We already know what the solutions are. It is a matter of implementing them effectively. Firstly, better e-waste management strategies and green standards can help address this challenge.

By all coming together on the global stage, we can create a sustainable industry that generates less waste, where our devices are re-used, as well recycled in novel ways. This also creates new forms of employment, economic activity, education and trade.

Already 67 countries have enacted legislation to deal with the e-waste they generate. Apple, Google, Samsung and many other brands have set ambitious targets for recycling and for the use of recycled and renewable materials.

It is now time we looked at dematerializing the electronics industry. The rise of ‘device-as-a-service’ business models could be one avenue. This is an extension of current leasing models, where consumers want to access the latest tech, without high up-front costs. With new ownership models, the manufacturer has an incentive to ensure that all resources are used optimally over a device’s lifecycle.

Changes in technology such as cloud computing and the internet of things (IoT) can help with dematerialization. Better product tracking and take-back schemes, which consumers trust, also constitute an important first step to circular global value chains.

Changing the direction of the prevailing linear ‘take, make and dispose’ model is a first step towards the circular economy we want to see in the future. However, this requires bold solutions, expertise, incentives and policies, today.

Entrepreneurs, investors, academics, business and labour leaders and lawmakers will all be needed to make the circular economy work. Innovative business and reverse supply chain models, circular designs, safety for e-waste collectors, ways of formalizing and empowering informal e-waste workers, are all part of the picture. Action is needed now.

We don’t want precious minerals and metals to be the new plastic. It’s not pollution; it’s not waste. It’s a vital resource we’re only just starting to value in full.

*Houlin Zhao, Secretary-General, ITU

This is part of “A New Circular Vision for Electronics, Time for a Global Reboot” series, first published at ILO

Continue Reading
Comments

Science & Technology

How digital technology and innovation can help protect the planet

Published

on

As a thick haze descended over New Delhi last month, air quality monitors across the Indian capital began to paint a grim picture.

The smoke, fed by the seasonal burning of crops in northern India, was causing levels of the toxic particle PM 2.5 to spike, a trend residents could track in real time on the Global Environment Monitoring System for Air (GEMS Air) website.

By early November, GEMS Air showed that concentrations of PM 2.5 outside New Delhi’s iconic India Gate were ‘hazardous’ to human health. In an industrial area north of the Indian capital, the air was 50 times more polluted.

GEMS Air is one of several new digital tools used by the United Nations Environment Programme (UNEP) to track the state of the environment in real time at the global, national and local levels. In the years to come, a digital ecosystem of data platforms will be crucial to helping the world understand and combat a host of environmental hazards, from air pollution to methane emissions, say experts.

“Various private and public sector actors are harnessing data and digital technologies to accelerate global environmental action and fundamentally disrupt business as usual,” says David Jensen, the coordinator of UNEP’s digital transformation task force.

“These partnerships warrant the attention of the international community as they can contribute to systemic change at an unprecedented speed and scale.”

The world is facing what United Nations Secretary-General António Guterres has called a triple planetary crisis of climate change, pollution and biodiversity loss. Experts say averting those catastrophes and achieving the Sustainable Development Goals will require fundamentally transforming the global economy within a decade. It’s a task that would normally take generations. But a range of data and digital technologies are sweeping the planet with the potential to promote major structural transformations that will enhance environmental sustainability, climate action, nature protection and pollution prevention.

A new age

UNEP is contributing to that charge through a new programme on Digital Transformation and by co-championing the Coalition for Digital Environmental Sustainability as part of the Secretary-General’s Digital Cooperation Roadmap.

UNEP studies show that for 68 per cent of the environment-related Sustainable Development Goal indicators, there is not enough data to assess progress. The digital initiatives leverage technology to halt the decline of the planet and accelerate sustainable finance, products, services, and lifestyles.

GEMS air was among the first of those programmes. Run by UNEP and Swiss technology company IQAir, it is the largest air pollution network in the world, covering some 5,000 cities. In 2020, over 50 million users accessed the platform and its data is being streamed into digital billboards to alert people about air quality risks in real time. In the future, the program aims to extend this capability directly into mobile phone health applications.

Building on lessons learned from GEMS Air, UNEP has developed three other lighthouse digital platforms to showcase the power of data and digital technologies, including cloud computing, earth observation and artificial intelligence.

Managing freshwater

One is the Freshwater Ecosystem Explorer, which provides a detailed look at the state of lakes and rivers in every country on Earth.

The fruit of a partnership between UNEP, the European Commission’s Joint Research Centre and Google Earth Engine, it provides free and open data on permanent and seasonal surface waters, reservoirs, wetlands and mangroves.

“It is presented in a policy-friendly way so that citizens and governments can easily assess what is actually happening to the world’s freshwater resources,” says Stuart Crane, a UNEP freshwater expert. “That helps countries track their progress towards the achievement of Sustainable Development Goal Target 6.6.”

Data can be visualized using geospatial maps with accompanying informational graphics and downloaded at national, sub-national and river basin scales. Data are updated annually and depict long-term trends as well as annual and monthly records on freshwater coverage.

Combating climate change

UNEP is also using data-driven decision making to drive deep reductions in methane emissions through the International Methane Emissions Observatory (IMEO). Methane is a potent greenhouse gas, responsible for at least a quarter of today’s global warming.

The observatory is designed to shine a light on the origins of methane emissions by collecting data from various sources, including satellites, ground-based sensors, corporate reporting and scientific studies.

The Global Methane Assessment published by UNEP and the Climate and Clean Air Coalition (CCAC) found that cutting human-caused methane by 45 per cent this decade would avoid nearly 0.3°C of global warming by the 2040s, and help prevent 255,000 premature deaths, 775,000 asthma-related hospital visits, and 26 million tonnes of crop losses globally.

“The International Methane Emissions Observatory supports partners and institutions working on methane emissions reduction to scale-up action to the levels needed to avoid the worst impacts of climate change,” says Manfredi Caltagirone, a UNEP methane emissions expert.

Through the Oil and Gas Methane Partnership 2.0, the methane observatory works with petroleum companies to improve the accuracy and transparency of methane emissions reporting. Current member companies report assets covering over 30 per cent of oil and gas production globally. It also works with the scientific community to fund studies that provide robust, publicly available data.

Preserving nature

UNEP is also backing the United Nations Biodiversity Lab 2.0, a free, open-source platform that features data and more than 400 maps highlighting the extent of nature, the effects of climate change, and the scale of human development. Such spatial data help decision-makers put nature at the heart of sustainable development by allowing them to visualize the natural systems that hold back natural disasters, store planet-warming gasses, like carbon dioxide, and provide food and water to billions.

More than 61 countries have accessed data on the UN Biodiversity Lab as part of their national reporting to the Convention on Biological Diversity, an international accord designed to safeguard wildlife and nature. Version 2.0 of the lab was launched in October 2021 as a partnership between UNDP, UNEP’s World Conservation Monitoring Centre, the Convention on Biodiversity Secretariat and Impact Observatory. 

All of UNEP’s digital platforms are being federated into UNEP’s World Environment Situation Room, a digital ecosystem of data and analytics allowing users to monitor progress against key environmental Sustainable Development Goals and multi-lateral agreements at the global, regional and national levels.

“The technical ability to measure global environmental change—almost in real time—is essential for effective decision making,” says Jensen.

“It will have game-changing implications if this data can be streamed into the algorithms and platforms of the digital economy, where it can prompt users to make the personal changes so necessary to preserving the natural world and achieving net zero.”

UNEP

Continue Reading

Science & Technology

Housing needs, the Internet and cyberspace at the forefront in the UK and Italy

Published

on

Modern construction methods and smart technology can revolutionise the building process and the way we live.

Population growth and demographic changes have led to a global housing shortage. According to research carried out by the Heriot-Watt University National Housing Federation and by the Homeless Charity Crisis Organisation, the UK will face a shortage of four million housing units by the end of 2031. This means that approximately 340,000 new housing units will need to be built each year. The houses built shall meet the demands of home automation and increasing environmental constraints.

Traditional building technology is unlikely to meet this demand. It is relatively expensive and too slow in fulfilling the necessary procedures and complying with all rules and regulations. Furthermore, the quality and capabilities of traditional construction methods are also limited. The only solution is modular production based on the principles of factory automation. This solution uses cordless and battery-free controls and sensors to perfectly integrate with home automation.

Modular buildings are based on a combination of construction methods called Modern Method of Construction (MMC). They include the use of panelling systems and components, such as roof and floor boxes, precast concrete foundation components, prefabricated wiring, mechanical engineering composites and innovative technologies.

With the opening of several factories, the UK has started to use the MMC to build prefabricated and fully equipped houses in modular form, which can be loaded onto trucks for transport across the country. This type of on-site assembly enables the house to be completed in days rather than months, thus reducing costs significantly. Modular buildings have become popular in Europe. In Italy, a pioneering company is the RI Group of Trepuzzi (Lecce), which is also operating in the fields of logistics and services and building health care facilities, field hospitals and public offices, which are cost-effective and quick to construct.

The impact of modular construction is expected to be significant and factories producing up to five thousand houses per year could become the best builders in the sector.

The construction standards of these new technology houses are higher than those of traditional houses. Thanks to better insulation, the electricity bill could be only half that of a traditional house.

Modular houses have kitchens and bathrooms, and are equipped with power and lighting via power cables, which are also modular, and wireless controls, in addition to the increasingly important network and telecommunications infrastructure.

Structural and modular wiring are derived from commercial electrical and industrial installations to ensure efficient and minimal electrical installation work. As technology changes, this standard installation is adaptable and offers a high degree of flexibility.

Experience in industrial and commercial construction shows that traditional fixtures are labour-intensive, rather rigid and still expensive. In contrast, on-site prefabricated modular cabling and the IDC system combined with wireless controllers and sensors can be fully installed at low cost. These are proven technologies and are moving from commercial to domestic use scenarios.

With the help of CAD support for modular cabling, all power cables are laid in the ceiling or wall space. The installation of wireless energy harvesting equipment simplifies the installation process as no switches and duct installation are required. For the first electrical fixing through the wall, the cable takes less time because there is no need to coordinate the position of the switch with the wall bolts. The level of dependency of on-site installation activities has also been reduced. Sensors, switches and wireless energy harvesting controls can be installed anywhere in the building, even in hard-to-reach areas.

After installation, the principle of energy harvesting will be used. Switches and sensors are powered by the surrounding environment and there is no need to replace old batteries and other maintenance equipment. Moreover, this flexibility and this reliability enable the system to be expanded at any time.

The modular construction technology enables it to adapt to various types of houses and meet the needs of today’s life through flexible shapes and various exterior decorations. This is not exactly the same as the old prefabricated houses, “granted” in Italy to earthquake victims who have been waiting for years for a decent, civilised home.

By providing a range of traditional and modern exterior decorative panels, the roofline can also be customised to suit local customs and architecture.

Through the combination of innovative product technology and good design, the aim of the smart home is to provide security and comfort. The usual requirement is to place the light switch and dimmer (or potentiometer) in the most convenient place. Driven by the kinetic energy collected by the switch itself, they can be placed anywhere.

They do not require wiring, but can send wireless signals to the receiver inside or near lights or DIN-rail mounts (German Institute for Standardisation). In addition, there is no need to use batteries and no need to replace them. This saves all the inconvenience and environmental risks that can be caused by replacing batteries.

Since this type of equipment has reached a wide range of applications, lighting and home entertainment will choose battery-free products. Besides controlling brightness and colour, self-powered switches can also be used to control sound systems or blinds. A key application of the smart home is the switch that can turn off/on devices that do not use traditional electricity when leaving or coming back home.

Energy harvesting technology also supports other sensor-based applications. For example, self-powered sensors can be wirelessly connected to an intruder alarm. Furthermore, by installing light-activated touch sensors on windows, lighting and heating can be turned off when no one is at home.

Another source of energy is the temperature difference between the heating radiator and the surrounding environment. For example, this energy harvesting enables a self-powered heating valve to perform heating control via a room temperature controller according to specific conditions.

From factories to offices, from multifunctional buildings to smart homes, wireless energy harvesting technology has been tested in approximately one million buildings worldwide. Most sensors, switches and other self-powered energy-harvesting devices can communicate at a distance of up to 30 metres in a building and meet the EnOcean international wireless standard, which encrypts messages below 1 GHz by sending a short message.

There are also some self-powered devices that integrate EnOcean energy harvesting technology and can communicate directly with the lights via the well-known Bluetooth or Zigbee (wireless communication standard based on the IEEE 802.15.4 specification, maintained by the ZigBee Alliance). This makes it possible to use green, battery-free switches and solar sensors to flexibly control other applications, such as LED lights or speakers.

Now that wireless sensors for energy harvesting can frame data at home, it will be a huge step forward to aggregate information and perform useful analysis. They process data through the Internet of Things (IoT), which refers to the path in technological development whereby, through the Internet, potentially every object of everyday life can acquire its own identity in cyberspace. As mentioned above, the IoT is based on the idea of “smart” items which are interconnected to exchange the information they possess, collect and/or process.

It also uses Artificial Intelligence (AI) to keep track of living patterns and activities in modular homes. Energy analysis is an application that can currently help homeowners further reduce energy consumption through AI.

Looking to the future, the combination of the IoT and AI will bring many benefits. Geographical data, weather and climate information, as well as activities, water and energy consumption and other factors will be very useful for planners, building organisations, builders and landlords.

Perceived architecture represents the next generation of sustainable building systems. Smart buildings will soon be able to integrate the IoT devices on their own, as well as generate large amounts of information and use it to optimise buildings. This provides a whole new dimension to the service and to the business and home economics model.

This is particularly relevant for the ageing population, as these smart technologies can radically change the lifestyles of the elderly people and their families. They are expected to bring transformative benefits in terms of health and well-being.

The key elements of such a home include smart, non-invasive and safe and secure connections with friends, family members, general practitioners, nurses and health care professionals, involving the care of residents. Technology based on battery-free sensors connected to the IoT will help prevent accidents at home, resulting from kitchens utensils and overflowing toilets, etc., and keep up with residents’ interactions with healthcare professionals.

Continue Reading

Science & Technology

Top 10 Emerging Technologies to Watch in 2021

Published

on

The World Economic Forum announced today its annual list of breakthrough technologies with the most significant potential to impact the world positively. From climate change to public health, technology will play a critical role in finding solutions to many of the world’s challenges. This year’s emerging technologies demonstrate the rapid pace of human innovation and offer a glimpse into what a more sustainable, healthier future could look like.

“Our goal with the list is always to identify those with the greatest potential for impact, but we also want to provide a diverse and inspirational list,” said Jeremy Jurgen, Managing Director at the World Economic Forum. “Every single technology has the potential to solve major global challenges.”

The technologies on the 10th anniversary list, curated by experts convened by the World Economic Forum and Scientific American, are selected against several criteria. In addition to promising major benefits to societies and economies, they must also be disruptive, attractive to investors and researchers, and expected to have achieved considerable scale within five years.

Over the past nine years, experts have made predictions about the emerging technologies expected to have major social, economic and environmental impacts worldwide. Many of the predictions were proven correct, while others did not come to fruition. Only time will tell if this year’s top 10 emerging technologies will transform lives or be displaced as more urgent needs arise.

“We’re delighted to present this collection of ambitious, potentially transformative technologies. These inspiring and actionable ideas confront some of the most urgent challenges of our time, including climate, health, agriculture and communication.” said Laura Helmuth, Editor-in-Chief at the Scientific American.

The top 10 technologies to make the list are:

Decarbonization technologies

As nations race to deliver on their commitments to tackle climate change, a multitude of technologies that offer lower-carbon footprint solutions, or suck carbon dioxide out of the air, will need to scale up fast. These technologies will include net-zero emissions air-conditioning, low-carbon cement, renewable energy sources and meat-free protein, among others.

Self-fertilizing crops

Providing food for the world’s growing population relies heavily on such nitrogen-containing industrial fertilizers as ammonia – the production of which accounts for 1% to 2% of global carbon dioxide emissions. New engineering approaches enable crop plants to produce their own fertilizer by mimicking a symbiotic relationship between plant roots and soil bacteria that occurs in nature.

Disease-diagnosing breath sensors

Human breath contains more than 800 compounds. New breath-sensing technologies analyse these compounds and detect changes in concentrations of compounds associated with diseases. Early-stage testing has demonstrated the potential of breath sensing technologies to diagnose COVID-19, tuberculosis and cancer.

On-demand drug manufacturing

Traditionally, drugs are made in large batches through a multi-step process with different parts dispersed among many locations worldwide. Recent advances in microfluidics and on-demand drug manufacturing open the possibility of common drugs like antidepressants and antihistamines being made to the exact dose and formulation tailored for an individual, on-site at their local pharmacy.

Energy from wireless signals

Devices that do not require much power to operate, such as pacemakers and smartwatches, could soon be wirelessly charged through Wi-Fi and 5G signals, leading to a future where low-power wireless devices never need plugging in.

Engineering better ageing
Research that unlocks the understanding of ageing mechanisms enables the development of targeted therapies that could one day stave off dementia and other age-related ailments, leading to healthier elderly years.

Green ammonia

Green ammonia, which is made from cleaner sources of hydrogen, could provide more environmentally friendly fertilizers for crops.

Wireless biomarker devices

Monitoring chronic diseases such as diabetes and cancer requires frequent blood testing to identify and track certain biological markers. Innovations in wireless, portable and wearable sensors integrated in clothing or contact lenses could soon monitor this vital information continuously.

Houses printed from locally sourced materials

Building houses with 3D printers could help tackle the challenge of inadequate housing for 1.6 billion people worldwide. The concept of 3D printing houses has been around for a while, but new advances enable houses to be built from locally sourced materials like clay, saving time, money and energy on transporting building materials to the site.

Space internet of things

At least 10 billion active devices make up the internet of things (IoT), a number that is expected to more than double in the next 10 years. Maximizing IoT benefits in communication and automation requires devices to be spread worldwide, but cellular networks span less than half the globe, leaving enormous gaps in connectivity. A space-based IoT system could patch those gaps, using a network of low-cost, low-weight nanosatellites that orbit a few hundred kilometres from Earth.

Continue Reading

Publications

Latest

Trending