Connect with us

Science & Technology

Quantum Technologies Flagship kicks off with first 20 projects

Published

on

The Quantum Technologies Flagship, a €1 billion initiative, was launched today at a high-level event in Vienna hosted by the Austrian Presidency of the Council of the EU.

The Flagship will fund over 5,000 of Europe’s leading quantum technologies researchers over the next ten years and aims to place Europe at the forefront of the second quantum revolution. Its long term vision is to develop in Europe a so-called quantum web, where quantum computers, simulators and sensors are interconnected via quantum communication networks. This will help kick-starting a competitive European quantum industry making research results available as commercial applications and disruptive technologies. The Flagship will initially fund 20 projects with a total of €132 million via the Horizon 2020 programme, and from 2021 onwards it is expected to fund a further 130 projects. Its total budget is expected to reach €1 billion, providing funding for the entire quantum value chain in Europe, from basic research to industrialisation, and bringing together researchers and the quantum technologies industry.

Andrus Ansip, Commission Vice-President for the Digital Single Market, said: “Europe is determined to lead the development of quantum technologies worldwide. The Quantum Technologies Flagship project is part of our ambition to consolidate and expand Europe’s scientificexcellence. If we want to unlock the full potential of quantum technologies, we need to develop a solid industrial base making full use of our research.”

Mariya Gabriel, Commissioner for Digital Economy and Society, added: “The Quantum Technologies Flagship will form a cornerstone of Europe’s strategy to lead in the development of quantum technologies in the future.  Quantum computing holds the promise of increasing computing speeds by orders of magnitude and Europe needs to pool its efforts in the ongoing race towards the first functional quantum computers.”

In the early 20th century, the first quantum revolution allowed scientists to understand and use basic quantum effects in devices, such as transistors and microprocessors, by manipulating and sensing individual particles.

The second quantum revolution will make it possible to use quantum effects to make major technological advances in many areas including computing, sensing and metrology, simulations, cryptography, and telecommunications. Benefits for citizens will ultimately include ultra-precise sensors for use in medicine, quantum-based communications, and Quantum Key Distribution (QKD) to improve the security of digital data. In the long term, quantum computing has the potential to solve computational problems that would take current supercomputers longer than the age of the universe. They will also be able to recognise patterns and train artificial intelligence systems.

Next steps

From October 2018 until September 2021, 20 projects will be funded by the Flagship under the coordination of the Commission. They will focus on four application areas – quantum communication, quantum computing, quantum simulation, quantum metrology and sensing – as well as the basic science behind quantum technologies. More than one third of participants are industrial companies from a wide range of sectors, with a large share of SMEs.

Negotiations are ongoing between the European Parliament, Council and Commission to ensure that quantum research and development will be funded in the EU’s multi-annual financial framework for 2021-2028. Quantum technologies will be supported by the proposed Horizon Europe programme for research and space applications, as well as the proposed Digital Europe programme, which will develop and reinforce Europe’s strategic digital capacities, supporting the development of Europe’s first quantum computers and their integration with classical supercomputers, and of a pan-European quantum communication infrastructure.

Background

Since 1998, the Commission’s Future and Emerging Technologies (FET) programme has provided around €550 million of funding for quantum research in Europe. The EU has also funded research on quantum technologies through the European Research Council (ERC). Only since 2007, the ERC has funded more than 250 research projects related to quantum technologies, worth some 450 million euro.

The Quantum Technologies Flagship is currently supported by Horizon 2020 as part of the FET programme, which currently runs two other Flagships (The Graphene Flagship and the Human Brain Project Flagship). The FET programme promotes large-scale research initiatives to drive major scientific advances and turn them into tangible innovations creating benefits for the economy and society across Europe. Funding for the Flagship project comes from Horizon 2020, its successor programme Horizon Europe and national funding.

The Quantum Technologies Flagship is also a component of the Commission’s European Cloud Initiative launched in April 2016, as part of a series of measures to support and link national initiatives for the digitisation of Europe’s industry.

Continue Reading
Comments

Science & Technology

Iran among five pioneers of nanotechnology

Published

on

Prioritizing nanotechnology in Iran has led to this country’s steady placement among the five pioneers of the nanotechnology field in recent years, and approximately 20 percent of all articles provided by Iranian researchers in 2020 are relative to this area of technology.

Iran has been introduced as the 4th leading country in the world in the field of nanotechnology, publishing 11,546 scientific articles in 2020.

The country held a 6 percent share of the world’s total nanotechnology articles, according to StatNano’s monthly evaluation accomplished in WoS databases.

There are 227 companies in Iran registered in the WoS databases, manufacturing 419 products, mainly in the fields of construction, textile, medicine, home appliances, automotive, and food.

According to the data, 31 Iranian universities and research centers published more than 50 nano-articles in the last year. 

In line with China’s trend in the past few years, this country is placed in the first stage with 78,000 nano-articles (more than 40 percent of all nano-articles in 2020), and the U.S. is at the next stage with 24,425 papers. These countries have published nearly half of the whole world’s nano-articles.

In the following, India with 9 percent, Iran with 6 percent, and South Korea and Germany with 5 percent are the other head publishers, respectively.

Almost 9 percent of the whole scientific publications of 2020, indexed in the Web of Science database, have been relevant to nanotechnology.

There have been 191,304 nano-articles indexed in WoS that had to have a 9 percent growth compared to last year. The mentioned articles are 8.8 percent of the whole produced papers in 2020.

Iran ranked 43rd among the 100 most vibrant clusters of science and technology (S&T) worldwide for the third consecutive year, according to the Global Innovation Index (GII) 2020 report.

The country experienced a three-level improvement compared to 2019.

Iran’s share of the world’s top scientific articles is 3 percent, Gholam Hossein Rahimi She’erbaf, the deputy science minister, has announced.

The country’s share in the whole publications worldwide is 2 percent, he noted, highlighting, for the first three consecutive years, Iran has been ranked first in terms of quantity and quality of articles among Islamic countries.

Sourena Sattari, vice president for science and technology has said that Iran is playing the leading role in the region in the fields of fintech, ICT, stem cell, aerospace, and is unrivaled in artificial intelligence.

From our partner Tehran Times

Continue Reading

Science & Technology

Free And Equal Internet Access As A Human Right

Published

on

Having internet access in a free and equal way is very important in contemporary world. Today, there are more than 4 billion people who are using internet all around the world. Internet has become a very important medium by which the right to freedom of speech and the right to reach information can be exercised. Internet has a central tool in commerce, education and culture.

Providing solutions to develop effective policies for both internet safety and equal Internet access must be the first priority of governments. The Internet offers individuals power to seek and impart information thus states and organizations like UN have important roles in promoting and protecting Internet safety. States and international organizations play a key role to ensure free and equal Internet access.

The concept of “network neutrality is significant while analyzing equal access to Internet and state policies regulating it. Network Neutrality (NN) can be defined as the rule meaning all electronic communications and platforms should be exercised in a non-discriminatory way regardless of their type, content or origin. The importance of NN has been evident in COVID-19 pandemic when millions of students in underdeveloped regions got victimized due to the lack of access to online education.

 Article 19/2 of the International Covenant on Civil and Political Rights notes the following:

“Everyone shall have the right to freedom of expression; this right shall include freedom to seek, receive and impart information and ideas of all kinds, regardless of frontiers either orally, in writing or in print, in the form of art, or through any other media of his choice.”

Internet access and network neutrality directly affect human rights. The lack of NN undermines human rights and causes basic human right violations like violating freedom of speech and freedom to reach information. There must be effective policies to pursue NN. Both nation-states and international organizations have important roles in making Internet free, safe and equally reachable for the people worldwide. States should take steps for promoting equal opportunities, including gender equality, in the design and implementation of information and technology. The governments should create and maintain, in law and in practice, a safe and enabling online environment in accordance with human rights.

It is known that, the whole world has a reliance on internet that makes it easy to fullfill basic civil tasks but this is also threatened by increasing personal and societal cyber security threats. In this regard, states must fulfill their commitment to develop effective policies to attain universal access to the Internet in a safe way.

 As final remarks, it can be said that, Internet access should be free and equal for everyone. Creating effective tools to attain universal access to the Internet cannot be done only by states themselves. Actors like UN and EU have a major role in this process as well.

Continue Reading

Science & Technology

Future Energy Systems Need Clear AI Boundaries

Published

on

Today, almost 60% of people worldwide have access to the Internet via an ever-increasing number of electronic devices. And as Internet usage grows, so does data generation.

Data keeps growing at unprecedented rates, increasingly exceeding the abilities of any human being to analyse it and discover its underlying structures.

Yet data is knowledge. This is where artificial intelligence (AI) comes in. Today’s high-speed computing systems can “learn” from experience and, thus, effectively replicate human decision-making.

Besides holding its own among global chess champions, AI aids in converting unstructured data into actionable knowledge. At the same time, it enables the creation of even more insightful AI – a win-win for all. However, this doesn’t happen without challenges along the way.

Commercial uses of AI have expanded steadily in recent years across finance, healthcare, education and other sectors. Now, with COVID-19 lockdowns and travel restrictions, many countries have turned to innovative technologies to halt the spread of the virus.

The pandemic, therefore, has further accelerated the global AI expansion trend.

Energy systems need AI, too.

Rapidly evolving smart technology is helping to make power generation and distribution more efficient and sustainable. AI and the Big Data that drives it have become an absolute necessity.  Beyond just facilitating and optimising, these are now the basic tools for fast, smart decision making.

With the accelerating shift to renewable power sources, AI can help to reduce operating costs and boost efficiency. Crucially, AI-driven “smart grids” can manage variable supply, helping to maximise the use of solar and wind power.

Read more in IRENA’s Innovation Toolbox.

Risks must be managed to maximise the benefits.

AI usage in the energy sector faces expertise-related and financial constraints.

Decision makers, lacking specialised knowledge, struggle to appreciate the wide-ranging benefits of smart system management. In this respect, energy leaders have proven more conservative than those in other sectors, such as healthcare.

Meanwhile, installing powerful AI tools without prior experience brings considerable risks. Data loss, poor customisation, system failures, unauthorised access – all these errors can bring enormous costs.

Yet like it or not, interconnected devices are on the rise.

What does this all mean for the average consumer?

Smart phones, smart meters and smart plugs, connected thermostats, boilers and smart charging stations have become familiar, everyday items. Together, such devices can form the modern “smart home”, ideally powered by rooftop solar panels.

AI can help all of us, the world’s energy consumers, become prosumers, producing and storing our own energy and interacting actively with the wider market. Our data-driven devices, in turn, will spawn more data, which helps to scale up renewables and maximise system efficiency.

But home data collection raises privacy concerns. Consumers must be clearly informed about how their data is used, and by whom. Data security must be guaranteed. Consumer privacy regulations must be defined and followed, with cybersecurity protocols in place to prevent data theft.

Is the future of AI applications in energy bright?

Indeed, the outlook is glowing, but only if policy makers and societies strike the right balance between innovation and risk to ensure a healthy, smart and sustainable future.

Much about AI remains to be learned. As its use inevitably expands in the energy sector, it cannot be allowed to work for the benefit of only a few. Clear strategies need to be put in place to manage the AI use for the good of all.

IRENA

Continue Reading

Publications

Latest

South Asia4 mins ago

The Persecution of Individuals from Hazara Community in Balochistan

The drastic situation was being faced by the individuals of Hazarajat in Balochistan province of Pakistan once again because the...

East Asia2 hours ago

Time to play the Taiwan card

At a time when the dragon is breathing fire, India must explore alternative tactics, perhaps establishment of formal diplomatic ties...

Intelligence4 hours ago

Indian Chronicle: Exposing the Indian Hybrid warfare against Pakistan

In recent years Indian hybrid warfare against Pakistan has intensified manifold to malign Pakistan Internationally through disinformation and propaganda tactics....

Finance6 hours ago

Corporate Boards are Critical Starting Points for Implementing Stakeholder Capitalism

COVID-19 has led to global and systemic economic, social and environmental disruption, and an increasing number of companies are recognizing...

Middle East7 hours ago

Why is Melih Bulu Seen as a Pro-AKP “Trustee” Rector?

The new year started under the shadow of social tensions triggered by Melih Bulu’s appointment to the rectorate of Bosphorus...

Middle East8 hours ago

Morocco Increases Pressure on Hezbollah by Arresting One of its Alleged Financiers

At a time when global attention is focused on the fight against the pandemic and the global effort to vaccinate...

Health & Wellness8 hours ago

Guterres warns against self-defeating ‘vaccinationalism’

With more than two million lives now lost worlwide to COVID-19, the UN Secretary-General appealed on Friday for countries to...

Trending