Connect with us

Energy

IEA steps up its work on energy innovation as money flows into new energy tech companies

Published

on

Investments are leading indicators of the direction of change in the energy sector. This is particularly true for investments in innovation and digitalisation, so-called “intangible assets” that will shape the technologies for supplying and using energy in the decades to come.

Across the economy, investments in long-lasting intangible assets – including software, R&D, data, management efficiency, branding – are growing and will be among the biggest sources of future productivity. In Europe, intangible investments are rising as a share of GDP, while those in more traditional, tangible capital assets are declining. In the United States, intangibles are already in the lead according to some estimates.

The International Energy Agency brings together the best global data on energy investments in its World Energy Investment report and Tracking Clean Energy Progress web platform, including investments in innovation.

Innovative energy technologies will be crucial to tackling environmental problems associated with energy use, as well as reducing consumer costs and increasing prosperity around the world. Both the public and private sectors play central roles in driving energy innovation, with private money flowing to new commercial opportunities, supported by government-backed markets that provide direction to innovative activities and government investment in novel, risky technology areas. To deliver the goals agreed by the 23 country signatories (plus the European Commission) of Mission Innovation, understanding the trends in the spending and the strategies of the private sector will be vital.

Electric mobility is leading an energy venture capital boom

The latest data on investments in start-ups from i3 shows a booming venture capital sector globally for energy technologies. Venture capital investors provide capital to multiple small companies with new ideas about how to deploy energy technologies, often combining technologies in novel ways in the hope of disrupting existing markets and delivering huge returns within five years if one of them is successful. While venture capital generally does not fund the underlying research, it is a good indicator of where people think there is scope for new technologies to meet customers’ unsatisfied needs and unseat the existing energy order.

Venture capital investment in energy technologies is flourishing, with more money flowing in 2018 than in the first two quarters of any previous year. But whereas the previous highpoint in 2008 was led by renewables – notably solar – it is now transportation that is getting all the attention, mostly electric vehicles. To complete the switch from supply-side to demand-side technologies, funding for energy efficiency (especially related to connected-buildings technology) has been higher than for renewables so far in 2018.

As we have previously noted, several factors underpin this trend. First, innovation in clean energy hardware and venture capital are often not well matched. The timeframe needed to establish the viability of energy projects can be too long, the capital requirements for technology demonstration too high and the consumer value too low. Although there is a much more established market for solar panels today, compared to 2008, there is a still a serious need to deliver better renewable technologies to the market. Secondly, while the upswing of investments is striking, the total number of deals was actually falling until this year, when it saw an 18% increase compared to the first half of 2017. What has changed is the willingness of investors – especially in Asia – to place a small number of very large bets on electric vehicle companies, which represent the hottest part of the market today.

Energy is still far from joining the ranks of biotechnology and software as a hundred-billion-dollar venture capital market. However, by combining spillovers from rapid digital technology advances with expectations of revolution in the transport system, it is currently in a growth phase. If consumers respond favourably, some of these digital and mobility ideas could be deployed at scales of millions of units relatively quickly; at such a scale new generations would be developed each year and performance improved dramatically. But is unclear whether the excitement around, for example, batteries for electric mobility could stimulate venture capital investment in electricity storage for the grid or whether venture capital will play a significant role in energy supply technology development. Markets for stored electricity are not poised to deliver such high returns in the near term and venture capital is not usually patient.

Changes and new entrants in corporate energy innovation strategy

Corporate venture capital can take a slightly more long-term view, but still more short-term than traditional corporate R&D programmes. High levels of technological uncertainty in today’s energy sector, coupled with rising competition between firms in different regions and, increasingly, different sectors, support a shift in the patterns of corporate innovation funding.

We estimate that global corporate spending on energy R&D grew 3% in 2017, to USD 88 billion, but is still lower than it was in 2014, before the oil price slumped. Over recent decades, these budgets have become less centralised and more integrated with product development in individual business units. Many major companies devote no more than one-tenth to one-third of their total R&D budgets to new technologies, with the bulk of spending going to incremental improvements of existing technologies. Given the high expectations for fundamental changes in the energy system and uncertainty about the timing and technologies involved, firms are trying to make their research budgets work as hard as possible.

Digitalisation, in particular, enables companies to place more small bets on emerging technologies and to be open to changing direction quickly. New technologies for software and digital-based products have shorter innovation cycles and can be brought to the market quicker. They require less investment and fewer consumables, and they can be prototyped more quickly and tested in a variety of environments simultaneously and do not need costly manufacturing facilities or value chains to be deployed. The result can be a lower unit cost of innovation. But it also opens energy companies up to competition from firms with core competences in information and communication technologies (ICT).

In 2017, total investment in energy technology start-ups by corporations – i.e. companies primarily engaged in making and selling non-financial products – reached USD 6.1 billion. This was a big increase compared to 2016, and was driven largely by investments by ICT companies alongside more traditional energy sector companies, including oil and gas and utilities and automakers. As with energy venture capital in general, the overall trend underpinned by several very large deals, especially in Asia. Notable deals in 2017 included Tencent and Baidu’s investments in Tesla, NIO and WM Motors; Intel’s investment in Volocoptor electric helicopters; Qualcomm’s investment in CargoX truck logistics; and China Mobile’s investment in Ninebot electric scooters.

In some cases, the entry of firms from sectors such as ICT into parts of the energy industry is forcing companies to change their perceptions of who they should consider their competitors to be.

There are several reasons large established companies provide capital to early-stage technology companies. They might see it as a good investment on a purely financial basis, but more commonly it is seen as an investment in learning about a technology, acquiring human capital, and building a relationship with the technology owner that would smooth the path to licensing or buying the technology if it is successful. In general, this approach is used with technologies that are currently outside the core competence of the corporate investor but that could add significant value to existing businesses if the market developed in that direction. Given the value of innovation to many large energy companies, corporate venture capital (CVC) finance and even growth equity (a type of private equity investment) can cost less and involve less risk than developing a technology in-house. It can also shield the developers from the strict evaluations placed on internal R&D projects housed in existing business units. For a start-up company, a CVC investor can provide access to expertise and customers that can give it a better chance of maturing quickly.

Among oil and gas companies, a noticeable recent trend is a shift away from technology areas that complement their existing infrastructure – such as bioenergy, CCUS and fossil fuel supply technologies – and towards technologies that could complement their broader capabilities or let them explore new business areas. Utilities have also increased their funding of energy technology start-ups. Worldwide, they spent a record USD 0.7 billion in 2017, surpassing the previous high of 2013 and the tail end of the clean tech boom. Solar power, electricity storage and, to a lesser extent, smart-grid technologies have been the main focus of utility funding in recent years, but growth in 2017 was driven largely by transport technologies, which took one-half of the total, and wind power technologies, which took one-quarter.

As innovation evolves, the IEA is helping policies to adapt

A growing number of energy companies are separating the teams that are focused on innovation outside their core competences, and that could in some cases undermine their existing businesses, from the governance structures of typical corporate R&D. Rather than having large budgets for research linked to sustaining existing businesses, these teams generally pursue a wider range of innovation management activities, often with lower capital requirements. These activities include VC funding, internal innovation competitions, pilot testing of competing options and more strategic partnerships with firms outside their traditional sectors. To manage risks in highly uncertain and unfamiliar technology areas, collaboration with technology suppliers, customers or across business units tends to play a larger role than in traditional corporate R&D.

Changes to the ways that new energy technologies are developed and commercialised by the private sector can require changes in the ways that governments incentivise and track innovation. Having a strong ecosystem of research institutions and energy entrepreneurs can be more valuable than tax breaks and R&D funding for making a country attractive to a large company as a place to undertake novel projects. Absolute corporate expenditure on R&D may become less closely linked to the pace of corporate innovation in low-carbon technologies. The need to collaborate to rapidly test and scale up ideas can reduce companies’ incentives to create and defend in-house intellectual property. Policy makers may need to ensure that their national or regional policies also support the improvements to capital-intensive hardware solutions needed to tackle climate change. In these areas, patient government capital for higher-risk technologies could become even more vital.

The IEA takes this public policy challenge seriously and is strengthening its work on innovation around the world. For example, on 30 September 2018, we signed a Memorandum of Understanding with India on collaboration on clean energy innovation as part of our Clean Energy Transitions Programme. We are also enhancing collaboration with Brazil and other key partner countries. Through this programme, plus our ongoing close cooperation with Mission Innovation and our leading network of Technology Collaboration Programmes, the IEA aims to support countries to have the best data and analysis on public and private sector energy R&D at their fingertips and apply international best practice in policy making.

The commentary is based on an excerpt from World Energy Investment 2018 and interviews conducted with corporate R&D leaders in late 2017 and early 2018. Source: IEA

Continue Reading
Comments

Energy

Fossil fuel consumption subsidies bounced back strongly in 2018

Published

on

Authors: Wataru Matsumura and Zakia Adam*

Higher average oil prices in 2018 pushed up the value of global fossil fuel consumption subsidies back up toward levels last seen in 2014, underscoring the incomplete nature of the pricing reforms undertaken in recent years, according to new data from the IEA.

The new data for 2018 show a one-third increase in the estimated value of these subsidies, to more than $400 billion. The estimates for oil, gas and fossil-fuelled electricity have all increased significantly, reflecting the higher price for fuels (which, in the presence of an artificially low end-user price, increases the estimated value of the subsidy). The continued prevalence of these subsidies – more than double the estimated subsidies to renewables – greatly complicates the task of achieving an early peak in global emissions.

The 2018 data sees oil return as the most heavily subsidised energy carrier, expanding its share in the total to more than 40%. In 2016, electricity briefly became the sector with the largest subsidy bill.

Fossil fuel consumption subsidies are in place across a range of countries. These subsidies lower the price of fossil fuels, or of fossil-fuel based electricity, to end-consumers, often as a way of pursuing social policy objectives.

There can be good reasons for governments to make energy more affordable, particularly for the poorest and most vulnerable groups. But many subsidies are poorly targeted, disproportionally benefiting wealthier segments of the population that use much more of the subsidised fuel. Such untargeted subsidy policies encourage wasteful consumption, pushing up emissions and straining government budgets.

Recent years have seen multiple examples of pricing reforms, underpinned by lower oil prices that created a political opportunity among oil-importing countries and a fiscal necessity among exporters. Reforms typically focused on gasoline and diesel pricing, and in some cases also on LPG, natural gas and electricity tariffs. IEA price data (shown below for gasoline) show clearly the wide range of end-user prices across countries – the lowest prices found among countries that subsidise consumption.

The nature of pricing reforms undertaken in recent years differ depending on the sector and on national circumstances, but fall into three broad categories:

  • Complete price liberalisation, typically for the main transport fuels, as for example in India, Mexico, Thailand and Tunisia.
  • Introduction of a mechanism for regular, automatic adjustment of prices in line with international prices. China has such a system for oil prices, and similar mechanisms were also introduced in Indonesia, Malaysia, Jordan, Cote d’Ivoire and Oman.
  • A schedule of reforms to regulated prices, often with a view to aligning them with cost-recovery or market-based prices. This was the most common type of reform in the Middle East and North Africa, where prices for oil products, natural gas, water and/or electricity were raised in Saudi Arabia, Kuwait, Qatar, Bahrain and the United Arab Emirates. There were also increases in regulated electricity prices elsewhere, as for example in Indonesia.

These price reforms were often accompanied by the introduction of more targeted programmes of support for vulnerable groups. They also brought significant financial savings to the governments concerned, allowing these resources to be deployed to other development or policy priorities.

However, in 2018 the oil price trended higher for much of the year before falling back in the last quarter. This became a major source of strain in countries where consumers were newly exposed to rising retail prices, particularly where national currencies were losing value against the US dollar at the same time.

The rise in retail prices created broader pressure to revisit some of the pricing reforms.

  • Some countries with fully liberalised prices sought ways to dampen the effects on consumers, for example via reductions in other taxes and duties (as in India) or via implicit price interventions through state-owned oil and gas companies.
  • Upward fuel price adjustments were postponed in some countries that had committed to follow international price movements but retained some administrative discretion over the level and timing of any changes. This was the case in Indonesia, Malaysia and Jordan.
  • In fully regulated price environments, the reform schedule was in some cases pushed back or watered down.

Shielding consumers from short-term changes in international fossil fuel prices comes at a fiscal and environmental cost. It also diminishes the potential for higher prices to curb demand and bring the market into balance.

The different reform pathways since 2015 can be separated out into the various components of the change in subsidy values. Pricing reforms over the last three years brought substantial dividends, estimated at 36 billion dollars in total. This represents either a direct easing of the strain on public finances (via reduced public expenditures on subsidies) or additional revenue accruing to resource-rich countries (by reclaiming more of the value that was previously being foregone because of under-pricing).

Notable reductions in oil-related consumption subsidies over this period were observed in many countries in the Middle East, including Saudi Arabia, the UAE, Qatar and Bahrain, as well as in Colombia and Pakistan. Ukraine saw the largest fall in subsidies for natural gas. Subsidies to fossil fuel-based electricity consumption were substantially lower over this period in Russia, Argentina, Indonesia, Pakistan, Turkmenistan and in parts of the Middle East.

However, these falls were outweighed by two other factors: a widening gap between prevailing prices and market-based pricing in many countries (exacerbated in some cases by depreciation of the domestic currencies against the dollar); and increased consumption of subsidised energy.

The largest increases in consumption subsidies for oil products were in Indonesia, Iran, Egypt and Venezuela. In the latter case, a collapsing currency meant that gasoline and diesel sales (where available) were essentially free in dollar terms. Iran also saw the largest increase in natural gas subsidies, and – together with Venezuela, Mexico, Egypt and China – was among those seeing the most significant increase in subsidies to fossil fuel-based electricity.

Committing political capital to subsidy reform remains tough, especially if international prices are volatile. But phasing out fossil fuel consumption subsidies remains a pillar of sound energy policy. Especially when part of a broader suite of supportive policy measures, pricing reform is pivotal for a more robust, secure and sustainable energy sector over the long term.

Industries and households are more likely to opt for energy-efficient equipment, vehicles and appliances. Investors in a range of energy technologies, especially clean technologies, see a better case to commit their capital. That is why the IEA continues to be a strong supporter of efforts to phase out inefficient fossil fuel consumption subsidies.

*Zakia Adam, WEO Energy Analyst

IEA

Continue Reading

Energy

France Shows How Energy and Society Are Intertwined

Todd Royal

Published

on

What should be asked about energy is what Plato’s The Republic through Socrates asked: “What is justice?” If energy has a moral, economic, environmental, and life-saving component then energy in all forms is certainly just.

This is where facts need to be realized, and find out if a carbon-free society run on renewable energy is even remotely possible? Over 6,000 everyday, products come from a barrel of crude oil.

The International Energy Agency (IEA) released The World Energy Outlook 2018 – the self-proclaimed “gold standard of energy analysis,’ – admitting a damning conclusion. That amidst the overwhelming amount of graphs, charts, tables and prognostications, “the percentage of total global primary energy demand provided by wind and solar is 1.1%.”

The world runs off fossil fuels, and no time in the coming decades will clean energy, a carbon-free society, or zero emission energy to electricity or electric vehicles sustain trillion-dollar economies. More alarming is the world’s largest authoritarian, communist government, China, controls 90 percent of the world’s rare earth minerals – “a group of 17 elements with similar qualities that are used in electric car batteries, wind turbines and solar panels.”  

 Nations, companies, and individuals care about national security, their own “self-interest rightly understood” while meeting the basics of food, clothing and shelter (Maslow’s Hierarch of Needs) – exactly what fossil fuels provide – on an affordable, scalable, reliable and flexible basis for energy to be delivered to billions of people starving for their modern way of life to continue.

We are witnessing an energy clash globally, and nowhere was that better defined than France’s “Yellow Vest” protests that began in late November 2018 and are ongoing. These protests brought a convergence of domestic concerns triggered over a proposed fuel tax hike that hit lower educated, ordinary voters more than educated urban dwellers.

France’s, politicized carbon tax – the theory goes – should be an efficient way to disseminate the monetary consequences of carbon onto the French and global economies; however, that isn’t necessarily the case. This regulatory heavy-handedness by the state has resulted in:

Decades of global conferences, forest of reports, dire television documentaries, celebrity appeals, school-curriculum overhauls and media bludgeoning,” without examining the facts.

France is a good test case for energy policy moving forward, because if humanity overwhelmingly using fossil fuels are killing plants, animals, the ecosphere and crushing human life than a tax is fair, just and equitable, correct? But that isn’t the case. The earth and human progress have never done better in recorded history. Economic growth and technology are saving us from such historic plagues like poverty, illness and deforestation.

President Emmanuel Macron and the previous administration of Francois Hollande wrongly targeted emissions unlike Germany that is a high-emitter off increased coal-fired power plant use backing up renewables. Macron’s carbon tax went after Yellow Vest protesters who are vehicle reliant. Since France heavily relies on clean, carbon-free nuclear power for their electricity, France is only“0.4% of global emissions.”

Macron is punishing French drivers via punitive tax hikes and it failed. Voters and everyday working citizens aren’t buying carbon taxes or anything that restricts energy and prosperity. Green piety in Washington State in the US was also rejected the same way it was in France.

Cutting transportation emissions are extremely hard to eliminate when the entire supply and value chain of the tailpipe’s emissions are factored into the equation. It’s why electric vehicles (EVs) aren’t as environmentally friendly as advertised.

Carbon taxation like renewables and carbon-free societies have become buzzwords that reveals the disconnect over the properties that constitute a modern society and an “aloof political class that never reasons with their concern over emissions.”

Achieving energy parity at low costs will never be accomplished by imposing solutions that consist of using expensive, unreliable, intermittent renewable energy. Then believing these policy solutions will have zero impact on economic growth and overall wellness. The impact is heavier use of coal.

The European Union (EU) has: “Eleven countries still planning to use coal-fired power in 2030 (in order of increasing installed capacity) are: Spain, Hungary, Croatia, Slovakia, Greece, Romania, Bulgaria, Czech Republic, Germany and Poland.”

All EU countries have been given energy transition funds to exit coal by 2030, but only France is able to withstand the use of coal through heavier use of nuclear. Geopolitical reasons are another reason you will find a transition to the clean energy economy in the coming decades, because of US shale oil and natural gas production – fracking is changing the world.

In general, US shale exploration and production (E&P) is booming like never before. As of December 2018 the United States briefly became a net exporter of crude oil and refined products; and unless voters ban fossil fuel production the US will become energy independent.

The US Department of Interior’s, United States Geological Survey announced in December 2018: “The largest estimate of technically, recoverable continuous oil that USGS has ever assessed in the United States. The Wolfcamp shale in the Midland Basin portion of Texas’ Permian Basin province contains an estimated mean of 20 billion barrels of oil.”

Whereas California doesn’t exploit their Monterrey Shale resources – considered one of the largest shale deposits in the US and possibly the world – since California policymakers are only pursuing clean energy resources. Why does fossil fuel and renewable energy have to be politicized when they could work together? Texas and California should be pioneering world-class energy research together. Fossil fuel could pay for research and development to build better renewable energy, globally scalable storage systems and an electrical grid that is smart, reliable and have a 50-100 year shelf life.

An honest broker of information takes energy choices and consequences of say increasing fossil fuel use by burning copious amounts of coal that China, India, Poland, Australia and the United States are doing versus emission-heavy air that cause all sorts of lung and respiratory illnesses.

Continue Reading

Energy

Energy and Geopolitics is Under Attack

Todd Royal

Published

on

Global warming. Climate change. Renewable energy. Carbon-free societies. All of these terms have gained status, as the balm to eliminate fossil fuels, which is supposedly causing anthropogenic, global warming. What should be noted however, is according to the National Oceanic and Atmospheric Administration (NOAA), and the United States National Climatic Data Center (NCDC):

1. The PRIMARY force is that the SUN heats the earth’s oceans and land,

2. Then, SECONDARILY, the earth’s oceans and land heats the atmosphere. The atmosphere is NOT heating the earth it’s the sun.

3. Consequently, after the above two, increasing air temperature then increases sea surface temperature.

Facts tell us the one constant on earth is that the climate is always changing. Facts also tell us that CO2 is statistically irrelevant, as a factor in determining the earth’s climate. Therefore, CO2 is a minor factor in weather determination.

Whether or not there is, or isn’t climate change, global warming, and who is, or isn’t to blame, here is why that sentiment is dangerous from noted climatologist, and true scientific consensus believer, Dr. Judith Curry:

“Climatology has become a political party with totalitarian tendencies. If you don’t support the UN consensus on human-caused global warming, if you express the slightest skepticism, you are a ‘climate-change denier,’ who must be banned from the scientific community.”

What’s alarming about Curry’s statements is the UN was created to keep another world war from breaking out while promoting integrated commerce, and human interaction instead of another global holocaust. Why the UN has gotten into climate research, and environmental, weather-interactions are grossly past its intended mandate.

Scientific research according to Karl Popper “should be based on skepticism, on the constant reconsideration of accepted ideas.”

When it comes to energy and climate we should be considering what promotes human longevity and flourishing. What makes energy and electricity affordable, scalable, abundant, reliable, and flexible? Now the global warming, climate change debate is only about made-for-profit power.

Renewables are sure-fire, taxpayer-funded, profit centers when:

“In 2016, renewables received 94 times more in U.S. federal subsidies than nuclear and 46 times more than fossil fuels per unit of energy generated.”

Weather and climate are under attack, but so is the science of energy, from believing a “Green New Deal” will work for labor to thinking all energy issues are solved from electricity. Electricity is a static proposition that needs to be generated from some source; whether oil, coal, natural gas, nuclear, solar panels, wind turbines or damned water through turbines to produce energy to electricity.

But nothing energizes environmentalists and citizens like renewable energy. Every single place renewables have been implemented they are a disaster.

In Germany, Denmark, Spain, Britain, South Australia, Vermont, Minnesota, New Mexico (in the beginning stages of maligning fossil fuels), Arkansas, California, Austin, Texas, and Georgetown, Texas, solar and wind farms have been valiantly attempted, and failed every single time. Renewables will never work under current technological and scientific constraints; and energy battery storage systems only have 8-12 maximum capacity according to Massachusetts Institute of Technology (MIT).

The science behind renewable energy also makes electricity more expensive. For example:

“Solar panels with storage deliver just 1.6 times as much energy as is invested as compared to the 75 times more energy delivered with nuclear.”

There is no battery revolution for energy storage systems, and renewables under current technological constraints. Economics factually show that renewables will always constrain electricity, causing price hikes and degrading infrastructure improvements. Only fossil fuels at this time have the science, engineering, technology, and economics that make sense for human flourishing and longevity.

Over six thousand products come from a barrel of crude oil. Meaning, the conversation should stop about de-carbonizing, searching for clean energy, and eliminating oil from our daily lives. There is positive correlation even causation between energy and environmentalism. Clean environments only happen, “as people consume higher levels of energy the overall environmental impact is overwhelmingly positive, not negative.”

Fossil fuels have been used safely for centuries, and billions have left poverty. Oil, natural gas, and coal reduce the amount of land needed for energy, compared to solar and wind farms. If the earth is warming:

“Then aerial fertilization by CO2 has increased food supplies by 25%, weather is less extreme in a warming world, and historically conflicts increase during periods of cooling, and decrease during warmer periods.”

Our growing understanding of energy, science, engineering, and markets yields important geopolitical lessons. The science, and use of natural gas, makes its conversion to liquid natural gas (LNG) more important to energy, geopolitics and diplomacy than anything outside of strong militaries. Natural gas is the soft power, weapon-of-choice for nation states like Russia.

Natural gas spending will jump five-fold in 2019, according to Wood Mackenzie. The International Energy Agency (IEA) says:“Natural gas demand to rise 10 percent over the next 5 years, and roughly 40 percent of that will come from China.”

The Trump administration is pushing for Eastern Mediterranean natural gas, and “sees the promotion of natural gas production and related infrastructure in the region as a key effort in tying countries together and promoting peace.” This continues “an Obama-era foreign policy objective.”

French, energy firm, Total, is partnering with Russia on a LNG project in the Arctic to protect French energy needs. Even smaller, geopolitical players like Mexico, are seeking ways to boost natural gas production 50 percent through government-owned, Petroleo Mexicanos (PEMEX).

Fossil fuels – particularly natural gas – will be the leader for decades ahead when it comes to soft power, national security and robust economic growth for mature and emerging markets. Political moves, similar to Michael Bloomberg donating $500 million to kill coal use in the US, could slow natural gas’ growth, but if they do, they will also devastate the country and its western allies geopolitically. China, Russia, India, Africa, Iran, and North Korea will never let a billionaire stop their economies or geopolitical power. Yes, energy and geopolitics is under attack from within, from national and from competing energy interests.

Continue Reading

Latest

Trending

Copyright © 2019 Modern Diplomacy