Connect with us

Energy

Unlocking Geothermal Potential in Japan Through Small-scale Generation

MD Staff

Published

on

Thousands of natural hot springs (or onsen) dot Japan’s countryside, providing a haven for relaxation and contemplation for millions of people. For thousands of years, they have been an important part of the historical and social fabric of the country, and they are represented everywhere from famous ukioy-e woodblock prints from the 18th century to contemporary sitcoms.

Today, however, they have the potential to be an important part of the transformation of Japan’s energy sector, with a power output equivalent to 23 megawatts (MW) lying beneath the surface in the form of geothermal energy, the world’s third-largest store. The world’s installed capacity for geothermal power was 12.9 gigawatts (GW) in 2017, with a levelised cost of electricity (LCOE) for recent projects ranging from USD 0.04 to around USD 0.13 per kilowatt-hour.

Geothermal power plants are not new to Japan.  The first geothermal plant in the country opened in 1924 in Bepphu, with the steam also being used to heat houses and cook food in restaurants.  However, it wasn’t until 1952 when Japan’s first commercial geothermal power station opened, in the city of Hachimantai in northern Japan.  Built by Japan Metal & Chemicals and with turbines by Toshiba, the plant originally provided about 9.5 MW of power, about 40% of its output today, with the residual hot water used for agricultural applications.

Today, Toshiba is the world’s largest supplier of geothermal turbines, followed by Mitsubishi and Fuji, also Japanese companies.  Japan is also one of the world’s largest developers of geothermal projects outside of the country. In Indonesia, Japanese companies are currently financing and building the Sarulla plant, whose output once completed will be 320 MW, the world’s largest.  Japanese companies also support Kenya’s geothermal-powered energy transformation, providing turbines, supplying equipment, and constructing mega-projects like the 158 MW Olkaria V steam power plant in Naivasha.

But despite Japan’s technical and construction preeminence and its significant energy potential, there are only around twenty geothermal plants in Japan, with a total output capacity of around 535 MW, only 0.3% of the country’s total electricity generation.  High upfront costs and rigorous regulatory processes are some of the reasons that the Wasabizawa plant, currently under construction in Akita prefecture, is the first large-scale geothermal project in about 20 years.

However, in the wake of the Fukushima nuclear disaster the Japanese government introduced new policies to accelerate geothermal power plant deployment. These included streamlined procedures for the approval of projects in national parks and, crucially, a new higher feed-in tariff (FIT) for small geothermal plants to more than one-and-a-half times of that of larger facilities.  This made it profitable to build plants with an output below 7.5 MW, which do not require environmental impact assessments and can be built in around half the time of larger plants.

These policies have not been unopposed. More than half of the geothermal sources are located around national parks or near the country’s 27,000 thermal springs that onsen rely on for their hot water supply.  Critics believe that geothermal projects will adversely affect water supply or quality, or that the plants will have a detrimental impact on hot spring resorts or national parks.

As a result, an important role of the small-scale geothermal plants built since 2012 has been to work closely with onsen operators, hotels and inns to prove that small-scale geothermal power generation can coexist with tourism facilities, without negatively impacting Japan’s natural beauty.

The first geothermal plant established within a national park was in the Tsuchiyu Onsen hot spring resort in Fukushima city.  The plant uses binary cycle geothermal power generation, which relies on working fluids with a boiling point lower than water, such as ammonia or certain hydrocarbons, to drive the turbines. Small-scale binary plants are compact and can take as little as one year to build, and, with a wide distribution of the required low-medium temperature geothermal resources across the country, there is huge potential for this power source to grow in Japan.

The 2011 earthquake, tsunami and related nuclear accident, had a devastating effect on Fukushima, and on Tsuchiyu Onsen.  Aside from the catastrophic impact of the events themselves, the onsen saw a sharp drop in tourists and subsequent closure of a number of ryokan (traditional Japanese inns).  Undaunted, local residents determined to rebuild the town, forming the TsuchiyuOnsen Town Reconstruction and Revitalization Council to lead the creation of an eco-town relying on locally-available clean energy.

According to Katsuichi Kato, President of Genki Up Tsuchiyu, the company in charge of the geothermal power plant, the town started virtually from scratch, without any local expertise in binary power generation, and with substantial administrative and financial hurdles to overcome.  Despite this, the town remained resilient and all stakeholders—from ryokan and onsen tourism operators to those in charge of the power plant—worked together to bring about a “miracle”. As Mr. Kato put it, “When forced to stand at the edge of a cliff, unprecedented wisdom and power can arise, but you must have courage, determination and responsibility to make your vision of the future happen.”

For Mr. Kato, the success of the project hinged on the fact that the council developed the plant not solely as a profitmaking venture, ceding control and operations to outside experts, but as a revitalization exercise for the whole town.  This, he believes, imbued it with the sense of purpose and cooperation necessary to rally the spirit of the town to work together to develop a model for an eco-friendly town where benefits are shared.

And benefits there are.  According to Mr. Kato, the geothermal plant has been a boon to tourism, adding to the number of people coming to visit the onsen for recreation or health purposes.  This is supported by others, including Mr. Kazuhiro Watanabe, owner of the Sansuiso Tsuchiyu Spa, who points out that thousands of people come from all over Japan each year to learn about how the binary plant does not affect the onsen water, bringing a new source of income. As an added bonus, the warm waste water from the binary power plant is supporting aquaculture of giant river prawn. The prawn are served in local hotels and restaurants, and can also be fished by tourists.

Other projects have emulated the success of the Tsuchiyu Onsen geothermal plant. For example, in 2014 the 2 MW Kumamoto geothermal plant, built by Chuo Electric Power Company, was developed in close cooperation with a local hot spring company Waita-kai and the Oguni resort. In March of this year, oil company Idemitsu Kosan launched a 5MW binary facility in Oita prefecture. A 7 MW plant in Iwate prefecture is expected to begin operation later this year, and is being developed by a venture that includes Japan Metal & Chemicals.  Tokyo-based financial services company Orix plans to develop up to 15 small-scale facilities throughout the country, starting with a 4.4 MW plant on the island of Hachijojima in 2022.

Another innovative new approach is a small 70 KW power generator the size of a small freight container that uses hot springs already tapped for hotels and inns to produce power. Developed by Kobe Steel, the system is being introduced in hotels such as the Yufuin Spa in Yufuincho, who can expect to recoup their initial investment in only four years under the government FIT.

Strengthened research and development, especially with regards to binary and other low temperature systems, can further increase efficiency and reduce the environmental footprint of geothermal plants, while actively engaging onsen and tourism operators as partners in plant development will ensure mutual benefits while reducing negative perceptions.

For Japan, already a global leader in renewable energy technologies and development, that is looking to reduce the risks associated with nuclear energy and the costs and air pollution associated with fossil fuel imports, domestic geothermal energy development can be a win-win scenario.  Japan also has a lot to share in terms of its experience and innovations, and can take advantage of global platforms like the International Renewable Energy Agency and the Global Geothermal Alliance to continue to help other countries develop their own geothermal capacity.

IRENA

Continue Reading
Comments

Energy

What would it take to limit the global temperature rise to 1.5 °C?

Published

on

Authors: Laura Cozzi and Tim Gould*

Every year, the World Energy Outlook scenarios are updated to take into account the latest data and developments in policies, technology, costs and science. The major new scientific element for this year’s WEO was without doubt the Special Report on Global Warming of 1.5 °C, which the Intergovernmental Panel on Climate Change (IPCC) published in late 2018.

The IPCC report contains a wealth of new information about the risks of global warming, underlining that many of the physical impacts of climate change escalate in a non-linear fashion in relation to increases in global temperature. In other words, the impacts of 2.0 °C of warming are far worse than those of 1.5 °C.

The energy sector is at the front line of this issue, as it is by far the largest source of the emissions that cause global warming. As a result, this year’s WEO explores in detail what a pathway consistent with capping the temperature rise at 1.5 °C would mean for the energy sector. The discussion goes to the heart of energy’s dual role in modern civilisation: it’s essential to all the comforts of modern life – our homes, workplaces, leisure and our infrastructure – but the way it’s largely produced and consumed at the moment damages the environment on which we all depend.

Although the task of tackling climate change is huge, it is relatively simple to define. Global emissions need to peak as soon as possible and then fall rapidly until they hit zero – or, as the Paris Agreement puts it, until there is a “balance between anthropogenic emissions by sources and removals by sinks,” a situation sometimes called net-zero.

It’s not the only variable that counts, but the year at which global emissions reach net-zero is a critically important indicator for the prospects of stabilising global temperatures. The Paris Agreement specifies that this needs to happen “in the second half of this century.” The IPCC’s 1.5 °C report underlines that there is a major difference between reaching net-zero in 2100 versus 2050, and attention in many countries is increasingly focused on earlier dates.

After the UN Climate Summit in September, at least 65 jurisdictions, including the European Union, had set or were actively considering long-term net-zero carbon targets, including efforts to reach net-zero in 2050 or sooner. These economies together accounted for 21% of global gross domestic product and nearly 13% of energy-related CO2 emissions in 2018.

The Sustainable Development Scenario

The Sustainable Development Scenario relies on all of these net-zero targets being achieved on schedule and in full. The technology learning and policy momentum that they generate means that they become the leading edge of a much broader worldwide effort, bringing global energy-related CO2 emissions down sharply to less than 10 billion tonnes by 2050, on track for global net-zero by 2070.

There are no single or simple solutions to achieve this result. Rapid energy transitions of the sort envisaged by the Sustainable Development Scenario would require action across all sectors, utilising a wide range of energy technologies and policies. Energy efficiency improvements and massive investment in renewables – led by solar PV – take the lead, but there are also prominent roles in this scenario for carbon capture, utilisation and storage (CCUS), hydrogen, nuclear and others.

Among the range of technology solutions proposed for global emissions, there is one category that is used only very sparingly. These are the so-called negative emissions technologies, which actually remove CO2 from the atmosphere. Examples are bioenergy used in conjunction with CCUS (often called “BECCS”) and direct air capture. These technologies may yet play a critical role, but the level at which they are deployed in the Sustainable Development Scenario (0.25 billion tonnes in 2050) is lower than nearly all of the 1.5 °C scenarios assessed by the IPCC.

The Sustainable Development Scenario and the pursuit of 1.5 °C

If emissions were to stay flat, at the net-zero level, from 2070 until the end of the century, then the Sustainable Development Scenario is “likely” (with 66% probability) to limit the rise in the average global temperature to 1.8 °C, which is broadly equivalent to a 50% probability of a stabilisation at 1.65 °C.

If negative emissions technologies of the sort mentioned above could be deployed at scale, then emissions could actually go below zero – meaning that carbon dioxide is being withdrawn from the atmosphere on a net basis. This is a very common feature of the scenarios assessed by the IPCC in its special report: 88 out of the 90 scenarios in the IPCC’s report assume some level of net negative emissions.

A level of net negative emissions significantly smaller than that used in most scenarios assessed by the IPCC would give the Sustainable Development Scenario a 50% probability of limiting the rise in global temperatures to 1.5 °C.

It is technically conceivable that the world will reach a point where large quantities of CO2 are absorbed from the atmosphere, but there are uncertainties about what may be possible and about the likely impacts. As we have pointed out in previous WEOs, when designing deep decarbonisation scenarios, there are reasons to limit reliance on early-stage technologies for which future rates of deployment are highly uncertain. 

That is why the WEO has always emphasised the importance of early policy action: the pathway followed by the Sustainable Development Scenario relies on an immediate and rapid acceleration in energy transitions.

With the same precautionary reasoning in mind, the WEO-2019 also explores what it would take to achieve a 50% probability of stabilisation at 1.5 °C without net negative emissions.

A 1.5 °C scenario that does not rely on negative emissions technologies implies achieving global net-zero emissions around 2050. This in turn means a reduction in emissions of around 1.3 billion tonnes CO2 every year from 2018 onwards. That amount is roughly equivalent to the emissions from 15% of the world’s coal fleet or from 40% of today’s global passenger car fleet.

The year by which different economies would need to hit net-zero in such a scenario would vary, but the implication for advanced economies is that they would need to reach this point in the 2040s. The difference, compared with the Sustainable Development Scenario, would be much starker for many developing economies, which would all need to be at net-zero by 2050.

A zero-carbon power system would need to become a reality at least a few years before the entire economy reaches net-zero. This implies moving to a zero-emissions electricity system in the 2030s for advanced economies and around 2040 for developing economies.

Discussing target dates in this context is useful, but the really tough part is working out how to get there. That requires credible plans to actually reduce emissions quickly across the entire economy, pathways that work not just from the perspectives of technical feasibility or cost-efficiency (although these are important) but also take into account the need for social acceptance and buy-in.

The technical solutions in the power sector, at least, are well known, although the scale and speed at which clean energy technologies would need to be deployed – and existing facilities either repurposed, retrofitted with CCUS, or retired – is breath-taking. But any economy-wide net-zero target also needs to find answers quickly for sectors that are much harder to decarbonise, notably buildings, heavy industries like cement and steel, aviation and freight transport. Achieving such an outcome, without compromising the affordability or reliability of energy, represents an extraordinary challenge.

The energy sector is rightly at the heart of the climate debate, but it cannot deliver such a transformation on its own. Change on a massive scale would be necessary across a very broad front. As the IPCC 1.5 °C report says, this type of scenario would require rapid and far-reaching transitions not only in energy, but also in land, urban infrastructure – including transport and buildings – and industrial systems.

In its 2019 edition, the World Energy Outlook once again puts the spotlight on the huge disparity between the kind of transformation that is required and the pathway that the world is on, according to our assessment of today’s policy plans and ambitions and the rising energy needs of a growing global population and economy.

As the IEA’s Executive Director, Dr Fatih Birol, commented at the WEO launch this week, the world urgently needs to put a laser-like focus on bringing down global emissions.

“This calls for a grand coalition encompassing governments, investors, companies and everyone else who is committed to tackling climate change,” Dr Birol said. “Our Sustainable Development Scenario is tailor-made to help guide the members of such a coalition in their efforts to address the massive climate challenge that faces us all.”

*Tim Gould, Head of Division for Energy Supply Outlooks and Investment.

IEA

Continue Reading

Energy

World Energy Outlook 2019 highlights deep disparities in the global energy system

MD Staff

Published

on

Deep disparities define today’s energy world. The dissonance between well-supplied oil markets and growing geopolitical tensions and uncertainties. The gap between the ever-higher amounts of greenhouse gas emissions being produced and the insufficiency of stated policies to curb those emissions in line with international climate targets. The gap between the promise of energy for all and the lack of electricity access for 850 million people around the world.

The World Energy Outlook 2019, the International Energy Agency’s flagship publication, explores these widening fractures in detail. It explains the impact of today’s decisions on tomorrow’s energy systems, and describes a pathway that enables the world to meet climate, energy access and air quality goals while maintaining a strong focus on the reliability and affordability of energy for a growing global population.

As ever, decisions made by governments remain critical for the future of the energy system. This is evident in the divergences between WEO scenarios that map out different routes the world could follow over the coming decades, depending on the policies, investments, technologies and other choices that decision makers pursue today. Together, these scenarios seek to address a fundamental issue – how to get from where we are now to where we want to go.

The path the world is on right now is shown by the Current Policies Scenario, which provides a baseline picture of how global energy systems would evolve if governments make no changes to their existing policies. In this scenario, energy demand rises by 1.3% a year to 2040, resulting in strains across all aspects of energy markets and a continued strong upward march in energy-related emissions.

The Stated Policies Scenario, formerly known as the New Policies Scenario, incorporates today’s policy intentions and targets in addition to existing measures. The aim is to hold up a mirror to today’s plans and illustrate their consequences. The future outlined in this scenario is still well off track from the aim of a secure and sustainable energy future. It describes a world in 2040 where hundreds of millions of people still go without access to electricity, where pollution-related premature deaths remain around today’s elevated levels, and where CO2 emissions would lock in severe impacts from climate change.

The Sustainable Development Scenario indicates what needs to be done differently to fully achieve climate and other energy goals that policy makers around the world have set themselves. Achieving this scenario – a path fully aligned with the Paris Agreement aim of holding the rise in global temperatures to well below 2°C and pursuing efforts to limit it to 1.5°C – requires rapid and widespread changes across all parts of the energy system. Sharp emission cuts are achieved thanks to multiple fuels and technologies providing efficient and cost-effective energy services for all.

“What comes through with crystal clarity in this year’s World Energy Outlook is there is no single or simple solution to transforming global energy systems,” said Dr Fatih Birol, the IEA’s Executive Director. “Many technologies and fuels have a part to play across all sectors of the economy. For this to happen, we need strong leadership from policy makers, as governments hold the clearest responsibility to act and have the greatest scope to shape the future.”

In the Stated Policies Scenario, energy demand increases by 1% per year to 2040. Low-carbon sources, led by solar PV, supply more than half of this growth, and natural gas accounts for another third. Oil demand flattens out in the 2030s, and coal use edges lower. Some parts of the energy sector, led by electricity, undergo rapid transformations. Some countries, notably those with “net zero” aspirations, go far in reshaping all aspects of their supply and consumption.

However, the momentum behind clean energy is insufficient to offset the effects of an expanding global economy and growing population. The rise in emissions slows but does not peak before 2040.

Shale output from the United States is set to stay higher for longer than previously projected, reshaping global markets, trade flows and security. In the Stated Policies Scenario, annual US production growth slows from the breakneck pace seen in recent years, but the United States still accounts for 85% of the increase in global oil production to 2030, and for 30% of the increase in gas. By 2025, total US shale output (oil and gas) overtakes total oil and gas production from Russia.

“The shale revolution highlights that rapid change in the energy system is possible when an initial push to develop new technologies is complemented by strong market incentives and large-scale investment,” said Dr Birol. “The effects have been striking, with US shale now acting as a strong counterweight to efforts to manage oil markets.”

The higher US output pushes down the share of OPEC members and Russia in total oil production, which drops to 47% in 2030, from 55% in the mid-2000s. But whichever pathway the energy system follows, the world is set to rely heavily on oil supply from the Middle East for years to come.

Alongside the immense task of putting emissions on a sustainable trajectory, energy security remains paramount for governments around the globe. Traditional risks have not gone away, and new hazards such as cybersecurity and extreme weather require constant vigilance. Meanwhile, the continued transformation of the electricity sector requires policy makers to move fast to keep pace with technological change and the rising need for the flexible operation of power systems.

“The world urgently needs to put a laser-like focus on bringing down global emissions. This calls for a grand coalition encompassing governments, investors, companies and everyone else who is committed to tackling climate change,” said Dr Birol. “Our Sustainable Development Scenario is tailor-made to help guide the members of such a coalition in their efforts to address the massive climate challenge that faces us all.”

A sharp pick-up in energy efficiency improvements is the element that does the most to bring the world towards the Sustainable Development Scenario. Right now, efficiency improvements are slowing: the 1.2% rate in 2018 is around half the average seen since 2010 and remains far below the 3% rate that would be needed.

Electricity is one of the few energy sources that sees rising consumption over the next two decades in the Sustainable Development Scenario. Electricity’s share of final consumption overtakes that of oil, today’s leader, by 2040. Wind and solar PV provide almost all the increase in electricity generation.

Putting electricity systems on a sustainable path will require more than just adding more renewables. The world also needs to focus on the emissions that are “locked in” to existing systems. Over the past 20 years, Asia has accounted for 90% of all coal-fired capacity built worldwide, and these plants potentially have long operational lifetimes ahead of them. This year’s WEO considers three options to bring down emissions from the existing global coal fleet: to retrofit plants with carbon capture, utilisation and storage or biomass co-firing equipment; to repurpose them to focus on providing system adequacy and flexibility; or to retire them earlier.

IEA

Continue Reading

Energy

Is OPEC stuck in a cycle of endless cuts?

Published

on

In its latest annual World Oil Outlook (WOO) report, published last week, the Organization of the Petroleum Exporting Countries (OPEC) predicted its oil production and market share to fall in the years to come.

This view of the future says a lot about the cartel’s policies in facing the ever-growing U.S. shale which is casting a dismal shadow over the future role which OPEC members are going to be playing in the global oil market.

According to the latest WOO report, OPEC expects its production of crude oil and other liquids to decline to 32.8 million barrels per day (bpd) by 2024 from its current 35 million bpd. This means that the cartel plans to go further with its plans for cutting production even after the current pact is over in 2020.

Considering the significant growth in U.S. shale production over the past few years, and to be exact, since the OPEC decided to cut production in order to relieve the negative impact of U.S. shale’s flow on oil prices, it seems that although OPEC efforts have paid off partially but they have also supported the further expansion of shale production by giving them more market share.

How OPEC sees the future of oil market and its own condition in the future, raises the question that for how long is the group going to continue these “cuts”? And is it going to be enough to maintain the significant role which the cartel has had as an influential body in the global oil market? 

The report

Before we go through the above-mentioned questions and discuss some possible answers, let’s take a look at some of the important information presented in recent WOO.

Two major aspects of the market are import to take into consideration here, first of which is production, and the second is consumption.

In the production part, as we mentioned earlier the organization sees its own production falling about seven percent in the mid-term. While according to the data provided, the cartel expects U.S. shale output to reach 16.9 million bpd in 2024 from the current 12.0 million bpd. 

This prediction means that the Middle East-dominated group has accepted defeat against U.S. shale producers and sees no way forward except further contracting to prevent the prices from falling.

In the consumption part on the other hand, once again, OPEC sees demand for its oil diminishing in the mid-term and cites rising climate activism and growing use of alternative fuels as some of the reasons for the reduction in mid-term oil demand. The true reason, however, lies somewhere else.

The producer of one-third of the total global oil expects oil consumption to reach 103.9 million bpd in 2023, down from 104.5 million bpd in last year’s report. Longer-term, oil demand, however, is expected to rise to 110.6 million bpd by 2040, although still lower than last year’s forecast.

Further cuts

In the past few years, OPEC has been reducing its oil output under a pact with the support of Russia and some other non-OPEC nations to rebalance the oversupplied market. 

Many oil experts and analysts have been recently arguing for an extension in the cuts deal, considering the emerging signs of a slowdown in global economic growth under the shadow of the U.S.-China trade war and a subsequent slowdown in oil demand.

Back in October, OPEC Secretary-General Mohammad Barkindo had announced that deeper cuts in the organization’s oil supplies were one of the options for OPEC and its allies to consider in their upcoming gathering in December.

It should be noted that Russia and Saudi Arabia as two main poles of the OPEC and non-OPEC alliance (known as OPEC+) have slightly different views about the need for further extension of the pact. Russia sees the current range of prices at about $60 good enough while the kingdom requires higher prices to go through with its ambitious Aramco IPO.

The broken cycle

What OPEC has presented in its latest report suggests that the cartel’s policy of controlling production is having an opposite impact. The skyrocketing U.S. shale production levels indicate that OPEC cuts are positively encouraging shale producers to increase their output more and more, and that will not only halt prices from rising but will also reduce OPEC’s share of the global market day by day.

In this regard, many analysts believe that OPEC should once again take into account the warnings of the former Saudi Oil Minister Ali al-Naimi, who had previously predicted that “OPEC’s production cuts only creates more production opportunity for U.S. shale oil and consequently the organization would be caught up in an endless maze of production cuts.

Final thoughts

With OPEC’s report pointing to several production challenges from its competitors, the cartel doesn’t seem to be much concerned about the demand side. 

According to the report, world crude oil consumption will continue to grow up to 2040, so that by 2024 the demand for crude oil will increase one million barrels a day to reach 104.8 million bpd. The demand growth will then continue at a slower pace, reaching 110.6 million bpd by 2040.

OPEC’s share of the mentioned 110.6 million bpd will be 44.1 million bpd, the report says.

So, it seems that OPEC believes it should continue holding its pact with the non-OPEC allies for a few more years when the growth in global oil demand would offset the increase in U.S. shale production and once again rebalance the market. 

From our partner Tehran Times

Continue Reading

Latest

Middle East2 hours ago

Middle Eastern protests: A tug of war over who has the longer breath

Mass anti-government protests in several Arab countries are turning into competitions to determine who has the longer breath, the protesters...

EU Politics4 hours ago

Rwanda: EU provides €10.3 million for life-saving refugee support measures

During his visit to Rwanda, Commissioner for International Cooperation and Development Neven Mimica has announced a €10.3 million support package...

South Asia6 hours ago

The era emerged from “RuwanWeliSaya”: Aftermath of Presidential Election in Sri Lanka

Authors: Punsara Amarasinghe & Eshan Jayawardane Civilizational influence in shaping national political consciousness is an indispensable factor   that one cannot...

Urban Development12 hours ago

Banking on nature: a Mexican city adapts to climate change

The Mexican city of Xalapa is surrounded by ecosystems that not only harbor stunning flora and fauna, but also provide...

Reports14 hours ago

Africa: Urgent action needed to mobilise domestic resources as tax revenues plateau

The average tax-to-GDP ratio for the 26 countries participating in the new edition of Revenue Statistics in Africa was unchanged at 17.2%...

Europe16 hours ago

U.S. President Trump to meet Bulgaria’s Prime Minister at the White House: What to expect?

Next Monday, 25 November, President Trump will welcome Bulgarian Prime Minister Borissov at the White House for a bilateral meeting....

Americas18 hours ago

Poll Shows Trump’s Israel Policy Is Opposed Even by Republicans

On Monday, November 18th, Reuters headlined “U.S. backs Israel on settlements, angering Palestinians and clouding peace process” and reported that,...

Trending

Copyright © 2019 Modern Diplomacy