Connect with us

Energy

Unlocking Geothermal Potential in Japan Through Small-scale Generation

Published

on

Thousands of natural hot springs (or onsen) dot Japan’s countryside, providing a haven for relaxation and contemplation for millions of people. For thousands of years, they have been an important part of the historical and social fabric of the country, and they are represented everywhere from famous ukioy-e woodblock prints from the 18th century to contemporary sitcoms.

Today, however, they have the potential to be an important part of the transformation of Japan’s energy sector, with a power output equivalent to 23 megawatts (MW) lying beneath the surface in the form of geothermal energy, the world’s third-largest store. The world’s installed capacity for geothermal power was 12.9 gigawatts (GW) in 2017, with a levelised cost of electricity (LCOE) for recent projects ranging from USD 0.04 to around USD 0.13 per kilowatt-hour.

Geothermal power plants are not new to Japan.  The first geothermal plant in the country opened in 1924 in Bepphu, with the steam also being used to heat houses and cook food in restaurants.  However, it wasn’t until 1952 when Japan’s first commercial geothermal power station opened, in the city of Hachimantai in northern Japan.  Built by Japan Metal & Chemicals and with turbines by Toshiba, the plant originally provided about 9.5 MW of power, about 40% of its output today, with the residual hot water used for agricultural applications.

Today, Toshiba is the world’s largest supplier of geothermal turbines, followed by Mitsubishi and Fuji, also Japanese companies.  Japan is also one of the world’s largest developers of geothermal projects outside of the country. In Indonesia, Japanese companies are currently financing and building the Sarulla plant, whose output once completed will be 320 MW, the world’s largest.  Japanese companies also support Kenya’s geothermal-powered energy transformation, providing turbines, supplying equipment, and constructing mega-projects like the 158 MW Olkaria V steam power plant in Naivasha.

But despite Japan’s technical and construction preeminence and its significant energy potential, there are only around twenty geothermal plants in Japan, with a total output capacity of around 535 MW, only 0.3% of the country’s total electricity generation.  High upfront costs and rigorous regulatory processes are some of the reasons that the Wasabizawa plant, currently under construction in Akita prefecture, is the first large-scale geothermal project in about 20 years.

However, in the wake of the Fukushima nuclear disaster the Japanese government introduced new policies to accelerate geothermal power plant deployment. These included streamlined procedures for the approval of projects in national parks and, crucially, a new higher feed-in tariff (FIT) for small geothermal plants to more than one-and-a-half times of that of larger facilities.  This made it profitable to build plants with an output below 7.5 MW, which do not require environmental impact assessments and can be built in around half the time of larger plants.

These policies have not been unopposed. More than half of the geothermal sources are located around national parks or near the country’s 27,000 thermal springs that onsen rely on for their hot water supply.  Critics believe that geothermal projects will adversely affect water supply or quality, or that the plants will have a detrimental impact on hot spring resorts or national parks.

As a result, an important role of the small-scale geothermal plants built since 2012 has been to work closely with onsen operators, hotels and inns to prove that small-scale geothermal power generation can coexist with tourism facilities, without negatively impacting Japan’s natural beauty.

The first geothermal plant established within a national park was in the Tsuchiyu Onsen hot spring resort in Fukushima city.  The plant uses binary cycle geothermal power generation, which relies on working fluids with a boiling point lower than water, such as ammonia or certain hydrocarbons, to drive the turbines. Small-scale binary plants are compact and can take as little as one year to build, and, with a wide distribution of the required low-medium temperature geothermal resources across the country, there is huge potential for this power source to grow in Japan.

The 2011 earthquake, tsunami and related nuclear accident, had a devastating effect on Fukushima, and on Tsuchiyu Onsen.  Aside from the catastrophic impact of the events themselves, the onsen saw a sharp drop in tourists and subsequent closure of a number of ryokan (traditional Japanese inns).  Undaunted, local residents determined to rebuild the town, forming the TsuchiyuOnsen Town Reconstruction and Revitalization Council to lead the creation of an eco-town relying on locally-available clean energy.

According to Katsuichi Kato, President of Genki Up Tsuchiyu, the company in charge of the geothermal power plant, the town started virtually from scratch, without any local expertise in binary power generation, and with substantial administrative and financial hurdles to overcome.  Despite this, the town remained resilient and all stakeholders—from ryokan and onsen tourism operators to those in charge of the power plant—worked together to bring about a “miracle”. As Mr. Kato put it, “When forced to stand at the edge of a cliff, unprecedented wisdom and power can arise, but you must have courage, determination and responsibility to make your vision of the future happen.”

For Mr. Kato, the success of the project hinged on the fact that the council developed the plant not solely as a profitmaking venture, ceding control and operations to outside experts, but as a revitalization exercise for the whole town.  This, he believes, imbued it with the sense of purpose and cooperation necessary to rally the spirit of the town to work together to develop a model for an eco-friendly town where benefits are shared.

And benefits there are.  According to Mr. Kato, the geothermal plant has been a boon to tourism, adding to the number of people coming to visit the onsen for recreation or health purposes.  This is supported by others, including Mr. Kazuhiro Watanabe, owner of the Sansuiso Tsuchiyu Spa, who points out that thousands of people come from all over Japan each year to learn about how the binary plant does not affect the onsen water, bringing a new source of income. As an added bonus, the warm waste water from the binary power plant is supporting aquaculture of giant river prawn. The prawn are served in local hotels and restaurants, and can also be fished by tourists.

Other projects have emulated the success of the Tsuchiyu Onsen geothermal plant. For example, in 2014 the 2 MW Kumamoto geothermal plant, built by Chuo Electric Power Company, was developed in close cooperation with a local hot spring company Waita-kai and the Oguni resort. In March of this year, oil company Idemitsu Kosan launched a 5MW binary facility in Oita prefecture. A 7 MW plant in Iwate prefecture is expected to begin operation later this year, and is being developed by a venture that includes Japan Metal & Chemicals.  Tokyo-based financial services company Orix plans to develop up to 15 small-scale facilities throughout the country, starting with a 4.4 MW plant on the island of Hachijojima in 2022.

Another innovative new approach is a small 70 KW power generator the size of a small freight container that uses hot springs already tapped for hotels and inns to produce power. Developed by Kobe Steel, the system is being introduced in hotels such as the Yufuin Spa in Yufuincho, who can expect to recoup their initial investment in only four years under the government FIT.

Strengthened research and development, especially with regards to binary and other low temperature systems, can further increase efficiency and reduce the environmental footprint of geothermal plants, while actively engaging onsen and tourism operators as partners in plant development will ensure mutual benefits while reducing negative perceptions.

For Japan, already a global leader in renewable energy technologies and development, that is looking to reduce the risks associated with nuclear energy and the costs and air pollution associated with fossil fuel imports, domestic geothermal energy development can be a win-win scenario.  Japan also has a lot to share in terms of its experience and innovations, and can take advantage of global platforms like the International Renewable Energy Agency and the Global Geothermal Alliance to continue to help other countries develop their own geothermal capacity.

IRENA

Continue Reading
Comments

Energy

Nord Stream 2: To Gain or to Refrain? Why Germany Refuses to Bend under Sanctions Pressure

Published

on

pipeline nord stream

The chances of the sanctions war around Nord Stream 2 to rage on after the construction of the pipeline is finally over seem to be high. That said, we have to admit, with regret or with joy, that it will be completed, and for the following reasons:

Germany, like any other European country, has set itself the task of abandoning coal and nuclear energy within the next few decades. In reality, however, there is no alternative to coal and nuclear energy. Simultaneously forsaking gasoline and diesel cars, which is something Europe dreams about, will inevitably increase the EU’s demand for electricity. However, green energy is unlikely to satisfy Europe’s energy needs any time soon. Hopes for cheap thermonuclear energy are unlikely to come true until 2050 at best. Therefore, in the coming decades, natural gas, Russian and other, will obviously remain the most convenient and cheapest fuel. At the same time, regardless of where the pipelines run, Russian natural gas will account for a significant share of the European and world markets. This is not politics – just a simple economic reality.

Despite the attributed environmental benefits of Nord Stream 2 and the Russian natural gas, the positive impact of replacing coal with natural gas remains largely unclear as it depends on the volume of methane leaking from the processes of gas extraction and transportation. Nonetheless, Nord Stream 2 presents itself as an attractive alternative for the EU as it would help decrease gas prices because Russia will be able to supply the EU with higher amounts of gas, thus, decreasing demand for expensive imported liquified natural gas (LNG).

Nord Stream 2, although a privately-financed commercial project, has political implications. Politics and economics are too closely intertwined, and in the short term at that. The abandonment of Nord Stream 2 will hardly weaken Russia and force the Kremlin to introduce democratic reforms. This will only result in Europe losing a good opportunity to effectively ensure its energy independence, as well as that of its Baltic and Eastern European allies, many of whom, unable to fully integrate themselves into European energy systems, continue to buy electricity from Russia.

At the same time, Nord Stream 2 will help make Germany a guarantor of the EU’s energy security. More and more people now feel that the sanctions against the Russian-German project are essentially meant to undermine Germany’s growing influence. However, even this abnormally cold winter has shown that political problems and competition for influence in the EU are taking a back seat to energy security issues. The disruption in LNG supplies from the United States has only underscored Europe’s need for the Nord Stream. Besides, when completed and controlled by Germany, Nord Stream 2 could be used as a means of pressure against Russia and Russian supplies which is exactly what Brussels and Washington want.

Yet, the United States continues to oppose the Nord Stream 2 project and, thus, trans-Atlantic tensions between Germany and the United States are on the rise. Like the Obama and Trump Administrations which opposed Nord Stream 2 and introduced tangible steps to halt its progress, the Biden Administration is too faced with a lot of pressure by American lobbyists and members of the Congress in order to push back and halt Nord Stream 2 progress and efforts. However, until this very day, US President Biden and his administration did not sanction the project, which could be understood in lights of Biden’s struggling efforts to repair relations with Germany after the Trump Administration’s accusations towards and troop withdrawals from Germany. Thus, although the current administration under Biden still opposes Nord Stream 2, it is reluctant to impose any sanctions because its priorities lie with repairing US-German ties in the Post-Trump era.

The United States is not the only opposing International player to Nord Stream 2, but even many Eastern European countries, including Slovakia, Ukraine and Poland are against the pipeline project in fear of geo-economic insecurity. For instance, it is believed that Nord Stream 2 would cost Ukraine approximately $2 to $3 billion in losses as the transit volumes shift from Ukraine to Nord Stream 2. Another argument put forth by European opposition to Nord Stream 2 is that it would undermine the EU’s energy solidarity or even a potential “Energy Union”; however, Germany and supporters of Nord Stream 2 often highlight that the imported Russian gas would not only benefit Germany, but rather all of Europe. The pipeline is expected upon completion to be able to transport 55 billion cubic meters of Russian Natural Gas to Germany and other clients in Europe!

Despite oppositions, threats of sanctioning and the earlier construction halt in December 2019, it seems that the Gazprom-Pipeline Nord Stream 2 will be completed and will go online soon as the Biden Administration continues to refrain from imposing sanctions.

Continue Reading

Energy

How Azerbaijan changed the energy map of the Caspian Sea

Published

on

image source: azertag.az

Since the collapse of the Soviet Union, crude oil and natural gas have been playing a key role in the geopolitics of the Caspian region. Hydrocarbon revenues became an important source of economic growth for the Caspian Basin countries such as Azerbaijan, Kazakhstan, and Turkmenistan. Shortly after gaining independence in the early 1990s, the Caspian states implemented energy policies that protect their national interests. According to the BP 2020Statistical Review of World Energy total proved energy reserves of the Caspian states are: Kazakhstan has30.00 billion barrels of oil and 2.7 trillion cubic meters of gas, Azerbaijan 7.00billion barrels of oil and 2.8 trillion cubic meters of gas, and Turkmenistan 0.6billion barrels of oil and 19.5 trillion cubic meters of gas.

Such rich hydrocodone reserves allowed the Caspian states to contribute significantly to the global energy markets. Today, the Caspian states are supplying oil and natural gas to various energy markets, and they are interested in increasing export volume and diversification of export routes. In comparison with Turkmenistan and Kazakhstan, which supply energy sources mainly to China and Russia, Azerbaijan established a backbone to export energy sources to Europe and Transatlantic space. As the Caspian Sea is landlocked, and its hydrocarbon resources located at a great distance from the world’s major energy consumers, building up energy infrastructure was very important to export oil and gas.

To this end, Azerbaijan created the milestone for delivery of the first Caspian oil and natural gas by implementing mega energy projects such as Baku-Tbilisi-Ceyhan (BTC) oil pipeline and Southern Gas Corridor (SGC).Now, one can say that both energy projects resulted from successful energy policy implemented by Azerbaijan. Despite the COVID-19 recession, the supply of the Azerbaijani oil to the world energy markets continued. In general, the BTC pipeline carries mainly Azeri-Chirag-Gunashli (ACG) crude oil and Shah Deniz condensate from Azerbaijan. Also, other volumes of crude oil and condensate continue to be transported via BTC, including volumes from Turkmenistan, Russia and Kazakhstan. As it is clear, the BTC pipeline linked directly the Caspian oil resources to the Western energy markets. The BTC pipeline exported over 27.8 million tons of crude oil loaded on 278 tankers at Ceyhan terminal in 2020. The European and the Asian countries became the major buyers of the Azerbaijani oil, and Italy (26.2%) and China (14%) became two major oil importers from Azerbaijan.

The successful completion of the SGC also strengthened Azerbaijani position in the Caspian region. The first Caspian natural gas to the European energy markets has been already supplied via Trans Adriatic Pipeline (TAP) in December 2020, which is the European segment of the SGC. According to TAP AG consortium,a total of one billion cubic metres (bcm) of natural gas from Azerbaijan has now entered Europe via the Greek interconnection point of Kipoi, where TAP connects to the Trans Anatolian Pipeline (TANAP). The TAP project contributes significantly to diversification of supply sources and routes in Europe.

Another historical event that affected the Caspian region was the rapprochement between Turkmenistan and Azerbaijan. The MoU on joint exploration of “Dostluk/Friendship” (previously called Kapaz in Azerbaijani and Sardar in Turkmen) offshore field between Azerbaijan and Turkmenistan was an important event that will cause positive changes in the energy map of the Caspian Sea.

The Assembly of Turkmenistan and Azerbaijan Parliament have already approved the agreed Memorandumon joint exploration, development, and deployment of hydrocarbon resources at the “Dostluq” field. It should be noted that for the first time two Caspian states agreed to cooperate in the energy sector, which opens a window for the future Trans-Caspian Pipeline (TCP) from Turkmenistan to Azerbaijan. Such cooperation and the future transit of Turkmen oil and gas via the existing energy infrastructure of Azerbaijan will be a milestone for trans-regional cooperation.

The supply of the Caspian and Central Asian natural gas to European energy markets was always attractive. Therefore, the TCP is a strategic energy project for the US and EU. After the signing of the Caspian Convention, the EU officials resumed talks with Turkmenistan regarding the TCP. The May 2019 visit of the Turkmen delegation headed by the Advisor of the President of Turkmenistan on oil and gas issues was aimed at holding technical consultations between Turkmenistan and the EU. Turkmen delegation met with the representatives of the General Directorate on Energy of the European Commission and with the representatives of “British Petroleum,” “Shell” and “Total” companies. TCP is a project which supports diversification of gas sources and routes for the EU, and the gas pipeline to the EU from Turkmenistan and Azerbaijan via Georgia and Turkey, known as the combination of “Trans-Caspian Gas Pipeline” (TCP), “South-Caucasus Pipeline Future Expansion” (SCPFX) became the “Project of Common Interest” for the EU.

Conclusively, Azerbaijan is a key energy player in the region. Mega energy projects of the country play an important role to deliver Caspian oil and gas to global energy markets. However, the Second Karabakh War has revealed the importance of peace and security in the region. The BTC pipeline and the Southern Gas Corridor linking directly the Caspian energy to Western energy markets were under Armenian constant threat. As noted by Hikmat Hajiyev, the Foreign Policy Advisor to the President, “Armenia fired cluster rocket to BTC pipeline in Yevlak region”. Fortunately, during the Second Karabakh War, Azerbaijan protected its strategic infrastructure, and there was no energy disruption. But attacks on critical energy infrastructure revealed that instability in the region would cause damages to the interests of many states.

In the end, Azerbaijan changed the energy map of the Caspian Sea by completing mega energy projects, as well as creating the milestone for energy cooperation in the Caspian region. After Azerbaijan’s victory in the Second Karabakh War, the country supports full regional economic integration by opening all transport and communication links. Now, the importance of the Caspian region became much more important, and Azerbaijan supports the idea of the exportation of natural gas from Turkmenistan and the Mediterranean via SGC. Such cooperation will further increase the geostrategic importance of the SGC, as well as Azerbaijan’s role as a transit country.

Continue Reading

Energy

The Silk Road of Gas: Energy Business from Central Asia to Europe

Published

on

Central Asia possesses a significant role within the global geopolitical balance since it comprises numerous trade channels that link many businesses with millions of target customers from China to Portugal and vice-versa. Withal, by having abundant hydrocarbon potentials, the region offers tremendous opportunities to the global and local players.

Throughout the recent period, the preponderance of the energy-based plans and policies triggered the emergence of mega projects in the region, such as the Southern Gas Corridor, Central Asia–China gas pipeline, TAPI, and a possible Trans-Caspian pipeline in the upcoming years. Albeit these intense investment activities are foreshadowing new regional perspectives for economic development, it also generates additional alternatives and realities for the European policymakers.

The new business in the traditional routes

Anciently, the region was home to the legendary Silk Road, which was shaping the vivid economic landscape of the planet. Today, the region’s erstwhile role in trade seems to be revitalized to some extent by the projects such as the Road and Belt Initiative. In contradistinction to the past, energy forms the backbone of modern trade in Central Asia despite some cardinal difficulties of marketing and transportation.

In the last decade, Turkmenistan, Kazakhstan, and Uzbekistan had some attempts to increase their presence in the sector via their involvement in Central Asia–China gas pipeline. Notwithstanding, none of them was able to establish a comprehensive framework of cooperation with the EU as Azerbaijan. Through its unique Southern Gas Corridor project, which enables the transfer of the natural gas from the Shah Deniz field of the Caspian Sea to South Europe, Azerbaijan had radically transformed the pipeline mappings at the Caspian region. Concomitantly this channel provides a tremendous chance to the other landlocked Central Asian countries to be able to meet the rising demand in the European market.

Europe’s apprehension

From the European Union perspective, energy can be categorized as a strategic sector since the European economy increasingly relies on international suppliers. Currently, 54% of the energy consumption within the EU is imported mainly from Russia. More specifically, in 2019, Russian stake in the EU’s natural gas import was 44%, and the dependency of EU countries on Russian gas in 2013 as follows: Estonia 100%, Finland 100%, Latvia 100%, Lithuania 100%, Slovakia 100%, Bulgaria 97%, Hungary 83%, Slovenia 72%, Greece 66%, Czech Republic 63%, Austria 62%, Poland 57%, and Germany 46%. These substantial factors are forming the backdrop of the EU’s diversification policy in the concerning field through the establishment of intense diplomatic and economic ties to ensure the sustainability of energy security.

During the anticipated turbulent periods, especially considering the latest exacerbation between Russia and the Western bloc over the Ukraine dispute, the European economy might inevitably face some severe hurdles. Since there is a possibility that the process might be accompanied by the risk of the blockage of the Russian gas by the transit countries.

The viable solution

Geopolitical escalations undoubtedly hasten the energy diversification process within the European Union. Therefore, the essence of the energy policy of the EU can be categorized as a combination of liberal and realist approaches. Although the union intends to achieve its economic goals via the market mechanisms, it also adopts a realist standpoint in International Relations, specifically in the energy context.

As stated by the British Petroleum data published in 2019, proved gas reserves of Azerbaijan, Kazakhstan, Turkmenistan, and Uzbekistan totaled26,2 trillion cubic meters or 13,1% of the world’s known reserve. Undoubtedly, such an enormous potential would significantly contribute to the energy security of the EU.

Given the current situation in the European energy market and the global political climate, the EU cannot ignore its energy security concept, which is the fundamental aim of energy policy. In this sense, Southern Gas Corridor appears like the most convenient alternative by considering the future possibility of the construction of the Trans-Caspian pipeline that would dramatically facilitate the direct transfer of the Central Asian gas to South Europe.

As long as the EU is dependent on the imports of fossil fuels, the necessity of the balance in the energy sector will remain topical. Hence the formulation of a rational approach towards cooperation with potential suppliers, particularly key countries such as Azerbaijan, is essential. Otherwise, the energy notion will remain a risky and problematic political and economic instrument.

Continue Reading

Publications

Latest

Trending