Connect with us

Energy

Progress on global energy goals slow, but strong gains in countries show promise

Published

on

The world is not on track to meet the global energy targets for 2030 set as part of the Sustainable Development Goals, but real progress is being made in certain areas – particularly expansion of access to electricity in least developed countries, and industrial energy efficiency, according to a new report from five international agencies.

Renewable energy is making impressive gains in the electricity sector, although these are not being matched in transportation and heating – which together account for 80% of global energy consumption.

While global trends are disappointing, recent national experiences around the world offer encouraging signs. There is mounting evidence that with the right approaches and policies, countries can make substantial in clean energy and energy access, and improve the lives of millions of people.

Tracking SDG7: The Energy Progress Report, launched at the Sustainable Energy for All Forum today, is the most comprehensive look available at the world’s progress towards the global energy targets on access to electricity, clean cooking, renewable energy and energy efficiency.

The following are some of the main findings of the report. Findings are based official national-level data and measure global progress up to 2015 for renewable energy and energy efficiency, and 2016 for access to electricity and clean cooking.

Access to Electricity

  • One billion people – or 13% of the world’s population – still live without electricity. Sub-Saharan Africa, and Central and South Asia continue to be the areas of the world with the largest access deficits. Almost 87% of the world’s people without electricity live in rural areas.
  • The number of people gaining access to power has been accelerating since 2010, but needs to ramp up further to achieve universal access to electricity by 2030. If current trends continue, an estimated 674 million people will still live without electricity in 2030.
  • Some of the strongest gains were made in Bangladesh, Ethiopia, Kenya and Tanzania, which all increased their electricity access rate by 3% or more annually between 2010 and 2016. Over the same period, India provided electricity to 30 million people annually, more than any other country. Sub-Saharan Africa’s electrification deficit has begun to fall in absolute terms for the first time.
  • Tens of millions of people now have access to electricity through solar home systems or connected to mini-grids. However, these remain concentrated in about a dozen pioneering countries where penetration of solar electricity can reach as much as 5-15% of the population.

Clean Cooking

  • Three billion people – or more than 40% of the world’s population – do not have access to clean cooking fuels and technologies. Household air pollution from burning biomass for cooking and heating is responsible for some 4 million deaths a year, with women and children at the greatest risk.
  • Parts of Asia have seen access to clean cooking outpace growth in population. These positive outcomes were driven largely by widespread dissemination of LPG or piped natural gas. In India, Pakistan, Indonesia and Vietnam, the population with access to clean cooking technologies grew by more than 1% of their population annually.
  • In Sub-Saharan Africa, however, population growth in recent years has outstripped the number of people gaining access to clean cooking technologies by a ratio of four to one.
  • Clean cooking continues to lag the furthest behind of all the four energy targets, due to low consumer awareness, financing gaps, slow technological progress, and lack of infrastructure for fuel production and distribution. If the current trajectory continues, 2.3 billion people will continue to use traditional cooking methods in 2030.

Energy Efficiency

  • There is mounting evidence of the uncoupling of growth and energy use. Global gross domestic product (GDP) grew nearly twice as fast as primary energy supply in 2010-15. Economic growth outpaced growth in energy use in all regions, except for Western Asia, where GDP is heavily tied to energy-intensive industries, and in all income groups. However, progress continues to be slow in low income countries, where energy intensity is higher than the global average.
  • Globally, energy intensity – the ratio of energy used per unit of GDP – fell at an accelerating pace of 2.8% in 2015, the fastest decline since 2010.  This improved the average annual decline in energy intensity to 2.2 % for the period 2010-2015. However, performance still falls short of the 2.6% yearly decline needed to meet the SDG7 target of doubling the global rate of improvement in energy efficiency by 2030.
  • Improvement in industrial energy intensity, at 2.7% per annum since 2010, was particularly encouraging, as this is the largest energy consuming sector overall. Progress in the transport sector was more modest, especially for freight transportation, and is a particular challenge for high-income countries. In low and middle-income countries, the energy intensity of the residential sector has been increasing since 2010.
  • Six of the 20 countries that represent 80 percent of the world’s total primary energy supply, including Japan and the US, reduced their annual primary energy supply in 2010-15 while continuing to grow GDP – indicating a peak in energy use. Among the large energy-intensive developing economies, China and Indonesia stood out with annual improvement exceeding 3 percent.

Renewable Energy

  • As of 2015, the world obtained 17.5% of its total final energy consumption from renewable sources, of which 9.6% represents modern forms of renewable energy such as geothermal, hydropower, solar and wind. The remainder is traditional uses of biomass (such as fuelwood and charcoal).
  • Based on current policies, the renewable share is expected to reach just 21% by 2030, with modern renewables growing to 15%, falling short of the substantial increase demanded by the SDG7 target.
  • Rapidly falling costs have allowed solar and wind to compete with conventional power generation sources in multiple regions, driving the growth in the share of renewables in electricity to 22.8% in 2015. But electricity accounted for only 20% of total final energy consumption that year, highlighting the need to accelerate progress in transport and heating.
  • The share of renewable energy in transport is rising quite rapidly, but from a very low base, amounting to only 2.8% in 2015. The use of renewable energy for heating purposes has barely increased in recent years and stood at 24.8% in 2015, of which one third was from modern uses.
  • Since 2010, China’s progress in renewable energy alone accounted for nearly 30% of absolute growth in renewable energy consumption globally in 2015. Brazil was the only country among the top 20 largest energy consumers to substantially exceed the global average renewable share in all end uses: electricity, transport and heating. The UK’s share of renewable energy in total final energy consumption grew by 1% annually on average since 2010 – more than five times the global average.

Tracking SDG7: The Energy Progress Report is a joint effort of the International Energy Agency (IEA), the International Renewable Energy Agency (IRENA), United Nations Statistics Division (UNSD), the World Bank, and the World Health Organization (WHO).

“It is clear that the energy sector must be at the heart of any effort to lead the world on a more sustainable pathway,” said Dr Fatih Birol, the Executive Director of the International Energy Agency (IEA). “There is an urgent need for action on all technologies, especially on renewables and energy efficiency, which are key for delivering on three critical goals – energy access, climate mitigation and lower air pollution. The IEA is committed to leading this agenda and working with counties around the world to support clean energy transitions.”

“Falling costs, technological improvements and enabling frameworks are fueling an unprecedented growth of renewable energy, which is expanding energy access, improving health outcomes, and helping to tackle climate change, while also creating jobs and powering sustainable economic growth,” said IRENA Director-General Adnan Z. Amin. “At the same time, this tracking report is an important signal that we must be more ambitious in harnessing the power of renewable energy to meet sustainable development and climate goals, and take more deliberate action to achieve a sustainable energy future.”

“This detailed report describing the progress so far on SDG7 is a testament to the collaboration of the five international agencies on providing quality and comprehensive data and delivering a common message regarding the progress towards ensuring access to affordable, reliable, sustainable and modern energy for all,” said Stefan Schweinfest, Director of the Statistics Division of UN DESA. “Still, there is a need for improving statistical systems that collect energy information in those countries where the most pressing energy issues remain to be addressed. Better data are needed to inform policy accurately, particularly developing countries, least developed countries, landlocked developing countries, and small island developing States. For this, investments in energy statistical systems are essential.”

“The experience of countries that have substantially increased the number of people with electricity in a short space of time holds out real hope that we can reach the billion people who still live without power,” said Riccardo Puliti, Senior Director for Energy and Extractives at the World Bank. “We know that with the right policies, a commitment to both on-grid and off-grid solutions, well-tailored financing structures, and mobilization of the private sector, huge gains can be made in only a few years. This in turn is having real, positive impacts on the development prospects and quality of life for millions of people.”

“It is unacceptable that in 2018, 3 billion people still breathe deadly smoke every day from cooking with polluting fuels and stoves. Every year, household air pollution kills around 4 million people from diseases including pneumonia, heart disease, stroke, lung disease and cancer,” said Dr Maria Neira, Director, Department of Public Health, Environmental and Social Determinants of Health, at the World Health Organization (WHO). “By expanding access to clean affordable household energy, the global community has the power to lift a terrible health burden from millions of marginalized people – in particular women and young children who face the greatest health risks from household air pollution.”

“As we take stock of progress towards the global goal on sustainable energy, this latest data clearly shows more action and political leadership is needed if we are to live up to our promise to leave no one behind,” said Rachel Kyte, Special Representative of the UN Secretary-General and CEO of Sustainable Energy for All. “To meet 2030 targets, we must make every unit of energy work harder. We need to increase investment in the technologies and business models that make electricity access affordable for everyone, place even bigger bets on the remarkable capacity of renewable energy and build big markets for clean fuels and cooking access. World leaders put the promise of leaving no one behind at the heart of the Sustainable Development Goals, and now is the time for that promise to become reality.”

It is the fourth edition of this report, formerly known as the Global Tracking Framework (GTF).  The report can be downloaded at http://trackingSDG7.esmap.org/  Funding for the report was provided by the World Bank’s Energy Sector Management Assistance Program (ESMAP).

IEA

Continue Reading
Comments

Energy

Hydrogen Could Be A Key Player In The Recovery And Resilience Plan

Published

on

Thanks to the contribution of vaccines, the Covid-19 pandemic is slowly beginning to abate and gradually lose its aggressiveness, with the consequent reduction of its impact on people’s health worldwide.

However, while the health effects of the pandemic appear to be fading, the negative economic effects of a year and a half of lockdown and forced closure of many businesses are being felt heavily at a global level and seem bound to last well beyond the end of the health emergency.

With a view to supporting and encouraging the “restart” and revival  of the economy, the European Union has launched a “Recovery and Resilience Plan”, allocating a huge amount of funds that shall be used in the coming years not only to help countries in difficulty with contingent measures, but also to stimulate economic and productive growth capable of modernising production models with specific reference to environmental balance, which is increasingly facing a crisis due to the use of non-renewable, highly polluting energy sources.

Italy will receive over 200 billion euros in European funds to develop its own projects to get out of the economic-pandemic crisis and rightly wants to use them not only to plug the leaks caused by the various ‘lockdowns’ in the national productive fabric, but also to implement a series of strategic projects capable of making not only the productive sectors, but also the public administration and the health and judicial systems more efficient.

In short, the “Recovery and Resilience Plan” that is currently coming to the fore may prove to be a powerful driving force for Italy’s development and modernisation.

The projects submitted by Italy to the EU institutions include an initial allocation of over 200 million euros – out of the 47 billion euros planned for the next decade – to promote research and development in the field of renewable energy and particularly in the hydrogen sector.

Why Hydrogen?

Hydrogen is potentially the most abundant source of “clean” energy in the universe. It is versatile, safe and reliable; when obtained from renewable energy sources, it produces no harmful emissions to the environment.

Nevertheless, it is not available in nature in its gaseous form – which is the only one that can be used as an energy source – as it is always bound to other elements, such as oxygen in water and methane as a gas.

The traditional processes used to “separate” hydrogen from oxygen in water and from methane use up large amounts of electricity, which makes the processes not only very expensive, but also highly polluting, with the paradox that, in order to produce a clean energy source, the environment is “polluted” anyway, especially if – as has been the case until recently – the electricity needed is produced with traditional non-renewable energy sources (coal, gas and oil).

The best source of hydrogen in gaseous form is the sea. Electrolysis can easily separate hydrogen from oxygen and store it in gaseous form for use as an energy source.

The electrolytic cells used to develop the process use up large amounts of energy and, fortunately for us, science is finding a way to produce it without polluting, using solar, wind and, above all, sea wave energy.

The use of marine energy creates a sort of “circular economy” for hydrogen production: from the practically inexhaustible primary source of ocean water, hydrogen can be extracted with the energy provided by wave and tidal motion.

Forty per cent of the world’s population live within 100 kilometres from the sea and this shows the potential of sea wave and tidal energy as an engine for sustainable development in economic, climate and environmental terms.

Nowadays modern, non-invasive tools are available to extract electricity from sea waves, such as the “penguin”, a device manufactured in Italy, which – placed 50 metres deep – produces electricity without harming marine flora and fauna.

Another example of Italian scientists’ intelligence and creativity is the Inertial Sea Wave Converter (ISWEC), a device housed inside a 15-metre-long hull which, occupying a marine area of just 150 square metres, is able to produce 250 megawatts of electricity a year, thus enabling to cut emissions into the atmosphere by 68 tonnes of CO2.

With these devices and the other ones that technology will develop over the next few years, it will be possible to power electrolytic cells for the production of hydrogen in gaseous form on an industrial scale, at levels that – over the next 15 years – will lead to the production of at least 100,000 tonnes of “green” hydrogen per year, thus enabling to reduce air pollution significantly, with positive effects on the economy, the environment and the climate.

In the summer of 2020, the European Union launched a project called the “Hydrogen Strategy”, with a funding of 470 billion euros, intended for research and production projects capable of equipping EU countries with electrolysis tools to produce at least one million tonnes of “green” hydrogen by the end of 2024.

The fight against CO2 emissions continues unabated: in the United States which, after Trump’s Presidency, has reaffirmed its commitment to reducing emissions; in China which, in its latest five-year plan, has forecast a 65% reduction in carbon dioxide emissions into the atmosphere by the end 2030; in Europe, which has always been at the forefront in the creation of devices for producing wave and tidal energy and exports its technologies to the United States, Australia and China.

According to the Hydrogen Council, an association of over 100 companies from around the world that share a common long-term vision for a transition to hydrogen, in the future Europe and China will compete and cooperate in the production of sea wave and tidal energy and in the related production of “green hydrogen”.

With its 14th five-year plan, China, in particular – after having been for decades, during its whirling economic development, one of the main sources of CO2 emissions into the atmosphere and of global pollution – has undertaken the commitment “to develop and promote the harmonious coexistence between man and nature, through the improvement of efficiency in the use of resources and a proper balance between protection and development”, as clearly stated by its Minister of Natural Resources Lu Hao.

It might sound like the sweet-talk and set phrases of a politician at a conference.

In the case of China and its Minister of Natural Resources, however, words have been turned into deeds.

As part of the Roadmap 2.0 for Energy Saving Technology and New Energy Vehicles, China has set a target of one million fuel cell vehicles and two million tonnes of hydrogen production per year by the end of 2035.

The China Hydrogen Energy Industry Development Report 2020 forecasts that, by the end of 2050, hydrogen energy will meet 10 per cent of energy requirements, while the number of hydrogen fuel cell vehicles will rise to 30 million and hydrogen production will be equal to 60 million tonnes.

With a view to giving substance to these prospects, China has established the “National Ocean Technology Centre” in Shenzhen and developed – with the Italian “International World Group” – the “China-Europe cooperation project for energy generation and hydrogen production from sea waves and from other renewable energy sources”.

These are concrete projects in which – thanks to Italian creativity and Chinese rationality and pragmatism – we must continue to invest and work, not least to give the third industrial revolution a cleaner face than the coal-stained one of the second industrial revolution.

These projects appear to be in line with those envisaged both at European and Italian levels by the ‘Recovery and Resilience Plan’, which should guide us out of the economic doldrums of the pandemic. They deserve to be financed and supported as they can not only contribute to the recovery and revival of the economy, but also to the reconstruction of a cleaner and more liveable world (thus showing that good can always come out of evil).

Continue Reading

Energy

The ‘energy crisis’ and its global implications

Published

on

A particular news caught my attention this morning regarding energy crises. Before going into the depth of the news, I would like to introduce you to the concept of energy crisis and its global implications.  As introduced by Garrett Hardin in 1968; the tragedy of commons that the resources of world are limited, if the resources are used excessively soon there will come a time when they will become scarce. These resources can only be sufficient through cooperation of people among each other; there’s no other solution. The tragedy of commons is the best way to explain the concept the energy crises.

Now, the population world is growing at an exponential rate and with the growing population there is a need to provide a better lifestyle to the upcoming generations.  In a struggle for raising that standard of living, more and more resources of developed world are being utilized. The McKinsey Global Institute forecasted that by 2020 developing countries will demand 80 percent more energy which proved to be true as is evident in recurrent fuel shortages and price hike globally. A MIT study also forecasted that worldwide energy demand could triple by 2050.

Besides petrol, there is also a rise in demand for natural gas with only few reliable reserves all over the world. The natural gas reserves are mostly unreliable because they are usually found in deep oceans and mere accessibility can cost a lot of expense. Henceforth, the supply is limited, the price has fluctuated greatly and recent technological development has reduced dependence upon natural gas by providing alternatives such as fuel efficient or electric cars. Similarly, electricity supply systems are also not very reliable because there have been power blackouts in the United States, Europe and Russia. There have also been chronic shortages of electric power in India, China, and other developing countries.

If we specifically observe the Iraqi oil crises to understand the whole energy crises shebang, then according to today’s news in TRT World, in Iraq alone, $150bn of stolen oil cash smuggled out since 2003. Iraqi oil exports are even 30-40% below prewar levels. The acting president of Iraq is furious because insane amount of corruption is being carried out in Iraq where substantial quantity of oil is being smuggled. President Barham Saleh presented a legislation to parliament, where, under law any transaction over $500,000 would be scrutinized. This step, if materialized, can be very crucial in preservation of oil reserves in Iraq after the Saddam Hussein regime.

In United States, presidents have constantly been avoiding energy problems because they are very controversial. The recent Texas electricity outrage was a one that had been warned about. Before the Arab Oil Embargo Nixon in 1970’s was reluctant about energy and said ‘as long as the air conditioners are working normally, there is no energy crisis’ but after this incident Nixon began to change his tone and said on television that “energy is number one issue”. Then came Carter, who got a number of legislations passed on the issue of energy even when his own party was against it. In the 1970’s the prevalent thought for United States was that the world would run out of energy resources very soon so they started investing more in nuclear armament as an alternative. In 1990’s the combined cycle plants that used natural gas to create electricity were really efficient and economical that even gas at a high price could be competitive, also ethno-industry was crated at that time.

Then, the threat of climate change is also one of great relevance in the context of energy crises. The nonrenewable energy resources such as oil, water and coal must be used carefully and lack of which can be hazardous. It can cause drought, famine, disease, mass migration that will eventually lead to a conflict such as explained in the tragedy of commons theory. The now developed nations exploited natural resources to build its wealth. The resources such as wood, coal, oil and gas where on one hand are very economical, on the other hand they can be the originators of carbon emissions. Climate change also led to loss of biodiversity as well as environmental hazards.

Even though the developed world i.e. north provides a significant amount of assistance to the global North i.e developing countries, they cannot be a replacement for the shortage of resources. Also, they also face extreme price hike in the energy resources even though the developing nations are the ones owning the resources such Iraq for oil. Besides expensive resources, these developed nations also give rise to domestic and political tensions in the third world countries. Organizations like Al-Qaeda have openly declared their intent to attack oil facilities to hurt the interests of US and its close allies.

All in all, the pertaining threat of energy crisis has global implications. One person’s’gain is another person’s loss but this can be made inevitable if cooperation takes places. Sharing is caring and in this context sharing can prevent from future wars and hurricanes, floods and droughts and famines. The extent of seriousness of the problem must be taken into consideration not only be academicians but by policy makers as well.

Continue Reading

Energy

Stay in Oil or Race to Green Energy? Considerations for Portfolio Transformation

Published

on

st

Oil and gas (O&G) companies face a conundrum: capture the remaining value in hydrocarbons, or decide if, when and how much to invest in new, low-carbon energy business models.

The global O&G industry has the opportunity to redeploy as much as $838 billion, or about 20% of cumulative capital expenditures over the next 10 years, to further optimize their hydrocarbon business and/or pursue new growth areas including new energy ventures.

Of low carbon business models, market sentiment is currently strongest for renewable power with growing interest in green hydrogen and carbon capture as well.

Why this matters

In the wake of COVID-19 disruptions and an accelerating energy transition, O&G companies face a conundrum: stay and capture the remaining value in hydrocarbons or embrace new energy business models. Deloitte’s new “Portfolio transformation in oil, gas and chemicals” research series provides valuable insights into portfolio transformation and offers key considerations for companies making capital allocation decisions and exploring future business models.

Finding the right recipe for portfolio transformation

While companies understand the imperative to change, they are grappling with how much to invest and most vexing, in which green technologies? After all, while the high-growth phase of the oil market may have come to an end, oil demand is still projected to remain above 87 million barrels per day by 2030, even in accelerated energy transition scenarios.

How much to redeploy? $838 billion may be a starting point

To determine how much capital to redeploy, O&G companies could start with capital that is not earning the desired return. Deloitte analyzed 286 listed global companies and revealed that in a base case scenario, these companies could have the opportunity to optimize up to 6% of future O&G production which may not generate a 20% return at an average oil price of $55 per barrel. In other words, about $838 billion, or about 20% of future capital expenditures (CAPEX) across the global industry could be redeployed to optimize these projects and/or pursue promising green ventures. The findings suggest that the opportunity to redeploy will not decrease, but rather increase if oil prices stay above pre-pandemic levels. Among the company groups, supermajors, on average, have a potential to redeploy up to 36% of their future CAPEX.

Where to invest? Solar and wind most frequently mentioned

After performing text analytics and sentiment analysis on thousands of news articles to glean a directional sense of which low-carbon and new energy solutions are attracting the most media attention, the study found renewable power (solar and wind) had the highest share (47% among all green energy models). The tide also seems to be turning for green hydrogen (8% share of mentions).

“A confluence of factors, including climate, the pandemic, supply-demand imbalances, changing trends in end-markets, and growing appetite for sustainability investments, has given oil, gas and chemicals companies the need to progress faster around portfolio transformation. Many companies are eager to act but are seeking guidance on the speed and extent to which they expand into new, potentially high-growth areas, be it in new regions, markets, products or technologies. By taking a strategic, purpose-driven approach, companies can sustainably and profitably build a future-ready portfolio.”- Amy Chronis, vice chairman and U.S. oil, gas and chemicals leader, Deloitte LLP

Debunking myths: Turning hindsight into foresight to navigate portfolio transformation

While many O&G companies have transformed their portfolios over the years, not every change has been successful. The Deloitte analysis dispels conventional wisdom about strategic shifts and offers insights and important considerations about portfolio building in the O&G industry.

Myth 1: Agility and flexibility always deliver gains

  • Reality: Of the more than 286 upstream and integrated companies analyzed, only 16% of companies that made frequent changes to their portfolios delivered top-quartile financial performance.

Myth 2: Being big and integrated guarantees success

  • Reality: Only 28% of big (revenues above $10 billion) and integrated companies figured in the top-quartile.

Myth 3: Oil has lost its luster

  • Reality: Oil still delivers significant value for many. Two-thirds of oil-heavy portfolios deliver above-average performance.

Myth 4: Every “green” shift is profitable and scalable

  • Reality: Of portfolios that have become greener, 9% delivered top quartile financial performance, underscoring the importance of a strategic, purpose-driven approach to portfolio transformation.

Myth 5: Shale’s pain makes onshore conventional plays an obvious choice

  • Reality: Between 18-45% of non-shale portfolios analyzed delivered below-average performance.

Keys to building a future-ready O&G portfolio

There are four components of a forward-looking portfolio: growth engines, cash generators, profit maximizers, and divestment of value strains. Optimizing the energy transition is not just about selecting the correct technologies in which to invest; it also involves upgrading business models to incorporate new metrics, dynamic planning and AI-based analytics to become more agile. Companies should also consider strategic alliances to maximize their strengths and gain from others.

Chemicals and specialty materials (C&SM) face similar urgency for transformation

As the chemicals industry navigates its own portfolio transformations, focus is key. Deloitte’s analysis of more than 200 chemical companies over a 20-year period showed that focused companies — those that prioritize certain end-markets and product categories and derive at least 60% of the total revenue from that category — outperformed diversified chemical companies. In fact, focused chemical companies organically grew revenues at twice the rate, generated 70% higher return on invested capital (ROIC), and delivered 60% higher shareholder returns.

The top-performing chemical companies typically change their portfolio mix more frequently than others —usually changing their portfolio once every business cycle and remaining focused on their over-arching business strategy, be it low cost, differentiated products, or exceptional service.

Keys to building a future-ready C&SM portfolio

The study recommends C&SM companies make critical portfolio choices that create value. The ongoing disruption in end markets requires leaders to make conscious decisions about their competitive advantage and play in products and service categories where they can build and maintain that advantage. Moreover, given the growing emphasis on sustainability, chemical companies should consider investing in recycling technologies and incorporating renewable and recyclable materials in their product offerings.

Continue Reading

Publications

Latest

Finance14 mins ago

World Bank Supports Croatia’s Firms Hit by COVID-19 Pandemic

Tamara Perko, President of the Management Board of the Croatian Bank for Reconstruction and Development (HBOR) and Elisabetta Capannelli, World...

coronavirus people coronavirus people
Economy2 hours ago

Assessing the trends of Globalization in the Covid Era

Coronavirus largely represents acceleration in existing globalization trends, rather than a full paradigm shift. Globalization has ebbed and flowed over...

Reports3 hours ago

Zimbabwe’s Economy is Set for Recovery, but Key Risks Remain

Gross Domestic Product (GDP) growth in Zimbabwe is projected to reach 3.9 percent in 2021, a significant improvement after a...

International Law6 hours ago

Carl Schmitt for the XXI Century

For decades, the scholars of international relations have confused the term “New World order” in the social, political, or economic...

New Social Compact7 hours ago

Educating Women in Pakistan: A Necessity For National Development

Education is fundamental to the success of any nation. Almost every developed nation recognizes its importance and lays great emphasis...

Economy9 hours ago

How has Russia’s economy fared in the pandemic era?

Authors: Apurva Sanghi, Samuel Freije-Rodriguez, Nithin Umapathi COVID-19 continues to upturn our lives and disrupt economic activity across the world....

Terrorism Terrorism
Intelligence10 hours ago

Incidents of Uranium Theft in India: Depleting Nuclear Safety and International Silence

In yet another incident of the capture of nuclear-related materials from unauthorized persons in India has made headlines in the...

Trending