Connect with us

Science & Technology

The Artificial Intelligence Race: U.S. China and Russia

Published

on

Artificial intelligence (AI), a subset of machine learning, has the potential to drastically impact a nation’s national security in various ways. Coined as the next space race, the race for AI dominance is both intense and necessary for nations to remain primary in an evolving global environment. As technology develops so does the amount of virtual information and the ability to operate at optimal levels when taking advantage of this data. Furthermore, the proper use and implementation of AI can facilitate a nation in the achievement of information, economic, and military superiority – all ingredients to maintaining a prominent place on the global stage. According to Paul Scharre, “AI today is a very powerful technology. Many people compare it to a new industrial revolution in its capacity to change things. It is poised to change not only the way we think about productivity but also elements of national power.”AI is not only the future for economic and commercial power, but also has various military applications with regard to national security for each and every aspiring global power.

While the U.S. is the birthplace of AI, other states have taken a serious approach to research and development considering the potential global gains. Three of the world’s biggest players, U.S., Russia, and China, are entrenched in non-kinetic battle to out-pace the other in AI development and implementation. Moreover, due to the considerable advantages artificial intelligence can provide it is now a race between these players to master AI and integrate this capability into military applications in order to assert power and influence globally. As AI becomes more ubiquitous, it is no longer a next-generation design of science fiction. Its potential to provide strategic advantage is clear. Thus, to capitalize on this potential strategic advantage, the U.S. is seeking to develop a deliberate strategy to position itself as the permanent top-tier of AI implementation.

Problem

The current AI reality is near-peer competitors are leading or closing the gap with the U.S. Of note, Allen and Husain indicate the problem is exacerbated by a lack of AI in the national agenda, diminishing funds for science and technology funding, and the public availability of AI research. The U.S. has enjoyed a technological edge that, at times, enabled military superiority against near-peers. However, there is argument that the U.S. is losing grasp of that advantage. As Flournoy and Lyons indicate, China and Russia are investing massively in research and development efforts to produce technologies and capabilities “specifically designed to blunt U.S. strengths and exploit U.S. vulnerabilities.”

The technological capabilities once unique to the U.S. are now proliferated across both nation-states and other non-state actors. As Allen and Chan indicate, “initially, technological progress will deliver the greatest advantages to large, well-funded, and technologically sophisticated militaries. As prices fall, states with budget-constrained and less technologically-advanced militaries will adopt the technology, as will non-state actors.” As an example, the American use of unmanned aerial vehicles in Iraq and Afghanistan provided a technological advantage in the battle space. But as prices for this technology drop, non-state actors like the Islamic State is making noteworthy use of remotely-controlled aerial drones in its military operations. While the aforementioned is part of the issue, more concerning is the fact that the Department of Defense (DoD) and U.S. defense industry are no longer the epicenter for the development of next-generation advancements. Rather, the most innovative development is occurring more with private commercial companies. Unlike China and Russia, the U.S. government cannot completely direct the activities of industry for purely governmental/military purposes. This has certainly been a major factor in closing the gap in the AI race.

Furthermore, the U.S. is falling short to China in the quantity of studies produced regarding AI, deep-learning, and big data. For example, the number of AI-related papers submitted to the International Joint Conferences on Artificial Intelligence (IJCAI) in 2017 indicated China totaled a majority 37 percent, whereas the U.S. took third position at only 18 percent. While quantity is not everything (U.S. researchers were awarded the most awards at IJCAI 2017, for example), China’s industry innovations were formally marked as “astonishing.”For these reasons, there are various strategic challenges the U.S. must seek to overcome to maintain its lead in the AI race.

Perspectives

Each of the three nations have taken divergent perspectives on how to approach and define this problem. However, one common theme among them is the understanding of AI’s importance as an instrument of international competitiveness as well as a matter of national security. Sadler writes, “failure to adapt and lead in this new reality risks the U.S. ability to effectively respond and control the future battlefield.” However, the U.S. can longer “spend its way ahead of these challenges.” The U.S. has developed what is termed the third offset, which Louth and Taylor defined as a policy shift that is a radical strategy to reform the way the U.S. delivers defense capabilities to meet the perceived challenges of a fundamentally changed threat environment. The continuous development and improvement of AI requires a comprehensive plan and partnership with industry and academia. To cage this issue two DOD-directed studies, the Defense Science Board Summer Study on Autonomy and the Long-Range Research and Development Planning Program, highlighted five critical areas for improvement: (1) autonomous deep-learning systems,(2) human-machine collaboration, (3) assisted human operations, (4) advanced human-machine combat teaming, and (5) network-enabled semi-autonomous weapons.

Similar to the U.S., Russian leadership has stated the importance of AI on the modern battlefield. Russian President Vladimir Putin commented, “Whoever becomes the leader in this sphere (AI) will become the ruler of the world.” Not merely rhetoric, Russia’s Chief of General Staff, General Valery Gerasimov, also predicted “a future battlefield populated with learning machines.” As a result of the Russian-Georgian war, Russia developed a comprehensive military modernization plan. Of note, a main staple in the 2008 modernization plan was the development of autonomous military technology and weapon systems. According to Renz, “The achievements of the 2008 modernization program have been well-documented and were demonstrated during the conflicts in Ukraine and Syria.”

China, understanding the global impact of this issue, has dedicated research, money, and education to a comprehensive state-sponsored plan.  China’s State Council published a document in July of 2017 entitled, “New Generation Artificial Intelligence Development Plan.” It laid out a plan that takes a top-down approach to explicitly mapout the nation’s development of AI, including goals reaching all the way to 2030.  Chinese leadership also highlights this priority as they indicate the necessity for AI development:

AI has become a new focus of international competition. AI is a strategic technology that will lead in the future; the world’s major developed countries are taking the development of AI as a major strategy to enhance national competitiveness and protect national security; intensifying the introduction of plans and strategies for this core technology, top talent, standards and regulations, etc.; and trying to seize the initiative in the new round of international science and technology competition. (China’s State Council 2017).

The plan addresses everything from building basic AI theory to partnerships with industry to fostering educational programs and building an AI-savvy society.

Recommendations

Recommendations to foster the U.S.’s AI advancement include focusing efforts on further proliferating Science, Technology, Engineering and Math (STEM)programs to develop the next generation of developers. This is similar to China’s AI development plan which calls to “accelerate the training and gathering of high-end AI talent.” This lofty goal creates sub-steps, one of which is to construct an AI academic discipline. While there are STEM programs in the U.S., according to the U.S. Department of Education, “The United States is falling behind internationally, ranking 29th in math and 22nd in science among industrialized nations.” To maintain the top position in AI, the U.S. must continue to develop and attract the top engineers and scientists. This requires both a deliberate plan for academic programs as well as funding and incentives to develop and maintain these programs across U.S. institutions. Perhaps most importantly, the United States needs to figure out a strategy to entice more top American students to invest their time and attention to this proposed new discipline. Chinese and Russian students easily outpace American students in this area, especially in terms of pure numbers.

Additionally, the U.S. must research and capitalize on the dual-use capabilities of AI. Leading companies such as Google and IBM have made enormous headway in the development of algorithms and machine-learning. The Department of Defense should levy these commercial advances to determine relevant defense applications. However, part of this partnership with industry must also consider the inherent national security risks that AI development can present, thus introducing a regulatory role for commercial AI development. Thus, the role of the U.S. government with AI industry cannot be merely as a consumer, but also as a regulatory agent. The dangerous risk, of course, is this effort to honor the principles of ethical and transparent development will not be mirrored in the competitor nations of Russia and China.

Due to the population of China and lax data protection laws, the U.S. has to develop innovative ways to overcome this challenge in terms of machine-learning and artificial intelligence. China’s large population creates a larger pool of people to develop as engineers as well as generates a massive volume of data to glean from its internet users. Part of this solution is investment. A White House report on AI indicated, “the entire U.S. government spent roughly $1.1 billion on unclassified AI research and development in 2015, while annual U.S. government spending on mathematics and computer science R&D is $3 billion.” If the U.S. government considers AI an instrument of national security, then it requires financial backing comparable to other fifth-generation weapon systems. Furthermore, innovative programs such as the DOD’s Project Maven must become a mainstay.

Project Maven, a pilot program implemented in April 2017, was mandated to produce algorithms to combat big data and provide machine-learning to eliminate the manual human burden of watching full-motion video feeds. The project was expected to provide algorithms to the battlefield by December of 2018 and required partnership with four unnamed startup companies. The U.S. must implement more programs like this that incite partnership with industry to develop or re-design current technology for military applications. To maintain its technological advantage far into the future the U.S. must facilitate expansive STEM programs, seek to capitalize on the dual-use of some AI technologies, provide fiscal support for AI research and development, and implement expansive, innovative partnership programs between industry and the defense sector. Unfortunately, at the moment, all of these aspects are being engaged and invested in only partially. Meanwhile, countries like Russia and China seem to be more successful in developing their own versions, unencumbered by ‘obstacles’ like democracy, the rule of law, and the unfettered free-market competition. The AI Race is upon us. And the future seems to be a wild one indeed.

References

Allen, Greg, and Taniel Chan. “Artificial Intelligence and National Security.” Publication. Belfer Center for Science and International Affairs, Harvard University. July 2017. Accessed April 9, 2018. https://www.belfercenter.org/sites/default/files/files/publication/AI%20NatSec%20-%20final.pdf

Allen, John R., and Amir Husain. “The Next Space Race is Artificial Intelligence.” Foreign Policy. November 03, 2017. Accessed April 09, 2018. http://foreignpolicy.com/2017/11/03/the-next-space-race-is-artificial-intelligence-and-america-is-losing-to-china/.

China. State Council. Council Notice on the Issuance of the Next Generation Artificial Intelligence Development Plan. July 20, 2017. Translated by RogierCreemers, Graham Webster, Paul, Paul Triolo and Elsa Kania.

Doubleday, Justin. 2017. “Project Maven’ Sending First FMV Algorithms to Warfighters in December.” Inside the Pentagon’s Inside the Army 29 (44). Accessed April 1, 2018.https://search-proquest-com.ezproxy2.apus.edu/docview/1960494552?accountid=8289.

Flournoy, Michèle A., and Robert P. Lyons. “Sustaining and Enhancing the US Military’s Technology Edge.” Strategic Studies Quarterly 10, no. 2 (2016): 3-13. Accessed April 12, 2018. http://www.jstor.org/stable/26271502.

Gams, Matjaz. 2017. “Editor-in-chief’s Introduction to the Special Issue on “Superintelligence”, AI and an Overview of IJCAI 2017.” Accessed April 14, 2018. Informatica 41 (4): 383-386.

Louth, John, and Trevor Taylor. 2016. “The US Third Offset Strategy.” RUSI Journal 161 (3): 66-71. DOI: 10.1080/03071847.2016.1193360.

Sadler, Brent D. 2016. “Fast Followers, Learning Machines, and the Third Offset Strategy.” JFQ: Joint Force Quarterly no. 83: 13-18. Accessed April 13, 2018. Academic Search Premier, EBSCOhost.

Scharre, Paul, and SSQ. “Highlighting Artificial Intelligence: An Interview with Paul Scharre Director, Technology and National Security Program Center for a New American Security Conducted 26 September 2017.” Strategic Studies Quarterly 11, no. 4 (2017): 15-22. Accessed April 10, 2018.http://www.jstor.org/stable/26271632.

“Science, Technology, Engineering and Math: Education for Global Leadership.” Science, Technology, Engineering and Math: Education for Global Leadership. U.S. Department of Education. Accessed April 15, 2018. https://www.ed.gov/stem.

Ecatarina Garcia is an Instructor in the Air Force’s Intelligence Officer Course where she instructs initial skills training on topics such as Signals Intelligence, Cyber, Human Intelligence, Surveillance and Reconnaissance (ISR) foundations and applied ISR to the Air Force’s newest Intelligence Officer students. She has been a Network Fusion Analyst for the Air Force for 13 years and has supported various operations concerning Iraq, Afghanistan, Syria, Yemen, and Russia. She is currently a doctoral student in the American Military University’s inaugural Global Security and Strategic Intelligence doctoral program.

Continue Reading
Comments

Science & Technology

At Last A Malaria Vaccine and How It All Began

Published

on

A health worker vaccinates a man against the Ebola virus in Beni, eastern Democratic Republic of the Congo. (file photo) World Bank/Vincent Tremeau

This week marked a signal achievement.  A group from Oxford University announced the first acceptable vaccine ever against malaria.  One might be forgiven for wondering why it has taken so long when the covid-19 vaccines have taken just over a year … even whether it is a kind of economic apartheid given that malaria victims reside in the poorest countries of the world.

It turns out that the difficulties of making a malaria vaccine have been due to the complexity of the pathogen itself.  The malarial parasite has thousands of genes; by way of comparison, the coronavirus has about a dozen.  It means malaria requires a very high immune response to fight it off.  

A trial of the vaccine in Burkina Faso has yielded an efficacy of 77 percent for subjects given a high dose and 71 percent for the low-dose recipients.  The World Health Organization (WHO) had specified a goal of 75 percent for effective deployment in the population.  A previous vaccine demonstrated only 55 percent effectiveness.  The seriousness of the disease can be ascertained from the statistics.  In 2019, 229 million new malaria infections were recorded and 409 thousand people died.  Moreover, many who recover can be severely debilitated by recurring bouts of the disease.

Vaccination has an interesting history.  The story begins with Edward Jenner.  A country doctor with a keen and questioning mind, he had observed smallpox as a deadly and ravaging disease.  He also noticed that milkmaids never seemed to get it.  However, they had all had cowpox, a mild variant which at some time or another they would have caught from the cows they milked.

It was 1796 and Jenner desperate for a smallpox cure followed up his theory, of which he was now quite certain, with an experiment.  On May14, 1796 Jenner inoculated James Phipps, the eight-year-old son of Jenner’s gardener.  He used scraped pus from cowpox blisters on the hands of Sarah Nelmes, a milkmaid who had caught cowpox from a cow named Blossom.  Blossom’s hide now hangs in the library of St. George’s Hospital, Jenner’s alma mater. 

Phipps was inoculated on both arms with the cowpox material.  The result was a mild fever but nothing serious.  Next he inoculated Phipps with variolous material, a weakened form of smallpox bacteria often dried from powdered scabs.  No disease followed, even on repetition.  He followed this experiment with 23 additional subjects (for a round two dozen) with the same result.  They were all immune to smallpox.  Then he wrote about it. 

Not new to science, Edward Jenner had earlier published a careful study of the cuckoo and its habit of laying its eggs in others’ nests.  He observed how the newly hatched cuckoo pushed hatchlings and other eggs out of the nest.  The study was published resulting in his election as a Fellow of the Royal Society.  He was therefore well-suited to spread the word about immunization against smallpox through vaccination with cowpox. 

Truth be told, inoculation was not new.  People who had traveled to Constantinople reported on its use by Ottoman physicians.  And around Jenner’s time, there was a certain Johnny Notions, a self-taught healer, who used it in the Shetland Isles then being devastated by a smallpox epidemic.  Others had even used cowpox earlier.  But Jenner was able to rationally formalize and explain the procedure and to continue his efforts even though The Royal Society did not accept his initial paper.  Persistence pays and finally even Napoleon, with whom Britain was at war, awarded him a medal and had his own troops vaccinated. 

Continue Reading

Science & Technology

The Dark Ghosts of Technology

Published

on

Last many decades, if accidently, we missed the boat on understanding equality, diversity and tolerance, nevertheless,  how obediently and intentionally we worshiped the technology no matter how dark or destructive a shape it morphed into; slaved to ‘dark-technology’ our faith remained untarnished and faith fortified that it will lead us as a smarter and successful nation.

How wrong can we get, how long in the spell, will we ever find ourselves again?

The dumb and dumber state of affairs; extreme and out of control technology has taken human-performances on ‘real-value-creation’ as hostage, crypto-corruption has overtaken economies, shiny chandeliers now only cast giant shadows, tribalism nurturing populism and  socio-economic-gibberish on social media narratives now as new intellectualism.

Only the mind is where critical thinking resides, not in some app.   

The most obvious missing link, is theabandonment of own deeper thinking. By ignoring critical thinking, and comfortably accepting our own programming, labeled as ‘artificial intelligence’ forgetting in AI there is nothing artificial just our own ‘ignorance’ repackaged and branded.  AI is not some runaway train; there is always a human-driver in the engine room, go check. When ‘mechanized-programming, sensationalized by Hollywood as ‘celestially-gifted-artificial-intelligence’ now corrupting global populace in assuming somehow we are in safe hands of some bionic era of robotized smartness. All designed and suited to sell undefined glittering crypto-economies under complex jargon with illusions of great progress. The shiny towers of glittering cities are already drowning in their own tent-cities.

A century ago, knowing how to use a pencil sharpener, stapler or a filing cabinet got us a job, today with 100+ miscellaneous, business or technology related items, little or nothing considered as big value-added gainers. Nevertheless, Covidians, the survivors of the covid-19 cruelties now like regimented disciples all lining up at the gates.  There never ever was such a universal gateway to a common frontier or such massive assembly of the largest mindshare in human history.

Some of the harsh lessons acquired while gasping during the pandemic were to isolate techno-logy with brain-ology.  Humankind needs humankind solutions, where progress is measured based on common goods. Humans will never be bulldozers but will move mountains. Without mind, we become just broken bodies, in desperate search for viagra-sunrises, cannabis-high-afternoons and opioid-sunsets dreaming of helicopter-monies.

Needed more is the mental-infrastructuring to cope with platform economies of global-age and not necessarily cemented-infrastructuring to manage railway crossings. The new world already left the station a while ago. Chase the brain, not the train.  How will all this new thinking affect the global populace and upcoming of 100 new National Elections, scheduled over the next 500 days? The world of Covidians is in one boat; the commonality of problems bringing them closer on key issues.

Newspapers across the world dying; finally, world-maps becoming mandatory readings of the day

Smart leadership must develop smart economies to create the real ‘need’ of the human mind and not just jobs, later rejected only as obsolete against robotization. Across the world, damaged economies are visible. Lack of pragmatic support to small medium businesses, micro-mega exports, mini-micro-manufacturing, upskilling, and reskilling of national citizenry are all clear measurements pointing as national failures. Unlimited rainfall of money will not save us, but the respectable national occupationalism will.  Study ‘population-rich-nations’ and new entrapments of ‘knowledge-rich-nations’ on Google and also join Expothon Worldwide on ‘global debate series’ on such topics.

Emergency meetings required; before relief funding expires, get ready with the fastest methodologies to create national occupationalism, at any costs, or prepare for fast waves of populism surrounded by almost broken systems. Bold nations need smart play; national debates and discussions on common sense ideas to create local grassroots prosperity and national mobilization of hidden talents of the citizenry to stand up to the global standard of competitive productivity of national goods and services.

The rest is easy

Continue Reading

Science & Technology

China and AI needs in the security field

Published

on

On the afternoon of December 11, 2020, the Political Bureau of the Central Committee of the Communist Party of China (CPC) held the 26th Collective Study Session devoted to national security. On that occasion, the General Secretary of the CPC Central Committee, Xi Jinping, stressed that the national security work was very important in the Party’s management of State affairs, as well as in ensuring that the country was prosperous and people lived in peace.

In view of strengthening national security, China needs to adhere to the general concept of national security; to seize and make good use of an important and propitious period at strategic level for the country’s development; to integrate national security into all aspects of the CPC and State’s activity and consider it in planning economic and social development. In other words, it needs to builda security model in view of promoting international security and world peace and offering strong guarantees for the construction of a modern socialist country.

In this regard, a new cycle of AI-driven technological revolution and industrial transformation is on the rise in the Middle Empire. Driven by new theories and technologies such as the Internet, mobile phone services, big data, supercomputing, sensor networks and brain science, AI offers new capabilities and functionalities such as cross-sectoral integration, human-machine collaboration, open intelligence and autonomous control. Economic development, social progress, global governance and other aspects have a major and far-reaching impact.

In recent years, China has deepened the AI significance and development prospects in many important fields. Accelerating the development of a new AI generation is an important strategic starting point for rising up to the challenge of global technological competition.

What is the current state of AI development in China? How are the current development trends? How will the safe, orderly and healthy development of the industry be oriented and led in the future?

The current gap between AI development and the international advanced level is not very wide, but the quality of enterprises must be “matched” with their quantity. For this reason, efforts are being made to expand application scenarios, by enhancing data and algorithm security.

The concept of third-generation AI is already advancing and progressing and there are hopes of solving the security problem through technical means other than policies and regulations-i.e. other than mere talk.

AI is a driving force for the new stages of technological revolution and industrial transformation. Accelerating the development of a new AI generation is a strategic issue for China to seize new opportunities in the organisation of industrial transformation.

It is commonly argued that AI has gone through two generations so far. AI1 is based on knowledge, also known as “symbolism”, while AI2 is based on data, big data, and their “deep learning”.

AI began to be developed in the 1950s with the famous Test of Alan Turing (1912-54), and in 1978 the first studies on AI started in China. In AI1, however, its progress was relatively small. The real progress has mainly been made over the last 20 years – hence AI2.

AI is known for the traditional information industry, typically Internet companies. This has acquired and accumulated a large number of users in the development process, and has then established corresponding patterns or profiles based on these acquisitions, i.e. the so-called “knowledge graph of user preferences”. Taking the delivery of some products as an example, tens or even hundreds of millions of data consisting of users’ and dealers’ positions, as well as information about the location of potential buyers, are incorporated into a database and then matched and optimised through AI algorithms: all this obviously enhances the efficacy of trade and the speed of delivery.

By upgrading traditional industries in this way, great benefits have been achieved. China is leading the way and is in the forefront in this respect: facial recognition, smart speakers, intelligent customer service, etc. In recent years, not only has an increasing number of companies started to apply AI, but AI itself has also become one of the professional directions about which candidates in university entrance exams are worried.

According to statistics, there are 40 AI companies in the world with a turnover of over one billion dollars, 20 of them in the United States and as many as 15 in China. In quantitative terms, China is firmly ranking second. It should be noted, however, that although these companies have high ratings, their profitability is still limited and most of them may even be loss-making.

The core AI sector should be independent of the information industry, but should increasingly open up to transport, medicine, urban fabric and industries led independently by AI technology. These sectors are already being developed in China.

China accounts for over a third of the world’s AI start-ups. And although the quantity is high, the quality still needs to be improved. First of all, the application scenarios are limited. Besides facial recognition, security, etc., other fields are not easy to use and are exposed to risks such as 1) data insecurity and 2) algorithm insecurity. These two aspects are currently the main factors limiting the development of the AI industry, which is in danger of being prey to hackers of known origin.

With regard to data insecurity, we know that the effect of AI applications depends to a large extent on data quality, which entails security problems such as the loss of privacy (i.e. State security). If the problem of privacy protection is not solved, the AI industry cannot develop in a healthy way, as it would be working for ‘unknown’ third parties.

When we log into a webpage and we are told that the most important thing for them is the surfers’ privacy, this is a lie as even teenage hackers know programs to violate it: at least China tells us about the laughableness of such politically correct statements.

The second important issue is the algorithm insecurity. The so-called insecure algorithm is a model that is used under specific conditions and will not work if the conditions are different. This is also called unrobustness, i.e. the algorithm vulnerability to the test environment.

Taking autonomous driving as an example, it is impossible to consider all scenarios during AI training and to deal with new emergencies when unexpected events occur. At the same time, this vulnerability also makes AI systems permeable to attacks, deception and frauds.

The problem of security in AI does not lie in politicians’ empty speeches and words, but needs to be solved from a technical viewpoint. This distinction is at the basis of AI3.

It has a development path that combines the first generation knowledge-based AI and the second generation data-driven AI. It uses the four elements – knowledge, data, algorithms and computing power – to establish a new theory and interpretable and robust methods for a safe, credible and reliable technology.

At the moment, the AI2 characterised by deep learning is still in a phase of growth and hence the question arises whether the industry can accept the concept of AI3 development.

As seen above, AI has been developing for over 70 years and now it seems to be a “prologue’.

Currently most people are not able to accept the concept of AI3 because everybody was hoping for further advances and steps forward in AI2. Everybody felt that AI could continue to develop by relying on learning and not on processing. The first steps of AI3 in China took place in early 2015 and in 2018.

The AI3 has to solve security problems from a technical viewpoint. Specifically, the approach consists in combining knowledge and data. Some related research has been carried out in China over the past four or five years and the results have also been applied at industrial level. The RealSecure data security platform and the RealSafe algorithm security platform are direct evidence of these successes.

What needs to be emphasised is that these activities can only solve particular security problems in specific circumstances. In other words, the problem of AI security has not yet found a fundamental solution, and it is likely to become a long-lasting topic without a definitive solution since – just to use a metaphor – once the lock is found, there is always an expert burglar. In the future, the field of AI security will be in a state of ongoing confrontation between external offence and internal defence – hence algorithms must be updated constantly and continuously.

The progression of AI3 will be a natural long-term process. Fortunately, however, there is an important AI characteristic – i.e. that every result put on the table always has great application value. This is also one of the important reasons why all countries attach great importance to AI development, as their national interest and real independence are at stake.

With changes taking place around the world and a global economy in deep recession due to Covid-19, the upcoming 14th Five-Year Plan (2021-25) of the People’s Republic of China will be the roadmap for achieving the country’s development goals in the midst of global turmoil.

As AI is included in the aforementioned plan, its development shall also tackle many “security bottlenecks”. Firstly, there is a wide gap in the innovation and application of AI in the field of network security, and many scenarios are still at the stage of academic exploration and research.

Secondly, AI itself lacks a systematic security assessment and there are severe risks in all software and hardware aspects. Furthermore, the research and innovation environment on AI security is not yet at its peak and the relevant Chinese domestic industry not yet at the top position, seeking more experience.

Since 2017, in response to the AI3 Development Plan issued by the State Council, 15 Ministries and Commissions including the Ministry of Science and Technology, the Development and Reform Commission, etc. have jointly established an innovation platform. This platform is made up of leading companies in the industry, focusing on open innovation in the AI segment.

At present, thanks to this platform, many achievements have been made in the field of security. As first team in the world to conduct research on AI infrastructure from a system implementation perspective, over 100 vulnerabilities have been found in the main machine learning frameworks and dependent components in China.

The number of vulnerabilities make Chinese researchers rank first in the world. At the same time, a future innovation plan -developed and released to open tens of billions of security big data – is being studied to promote the solution to those problems that need continuous updates.

The government’s working report promotes academic cooperation and pushes industry and universities to conduct innovative research into three aspects: a) AI algorithm security comparison; 2) AI infrastructure security detection; 3) AI applications in key cyberspace security scenarios.

By means of state-of-the-art theoretical and basic research, we also need to provide technical reserves for the construction of basic AI hardware and open source software platforms (i.e. programmes that are not protected by copyright and can be freely modified by users) and AI security detection platforms, so as to reduce the risks inherent in AI security technology and ensure the healthy development of AI itself.

With specific reference to security, on March 23 it was announced that the Chinese and Russian Foreign Ministers had signed a joint statement on various current global governance issues.

The statement stresses that the continued spread of the Covid-19 pandemic has accelerated the evolution of the international scene, has caused a further imbalance in the global governance system and has affected the process of economic development while new global threats and challenges have emerged one after another and the world has entered a period of turbulent changes. The statement appeals to the international community to put aside differences, build consensus, strengthen coordination, preserve world peace and geostrategic stability, as well as promote the building of a more equitable, democratic and rational multipolar international order.

In view of ensuring all this, the independence enshrined by international law is obviously not enough, nor is the possession of nuclear deterrent. What is needed, instead, is the country’s absolute control of information security, which in turn orients and directs the weapon systems, the remote control of which is the greedy prey to the usual suspects.

Continue Reading

Publications

Latest

Defense2 hours ago

China’s quad in the making: A non-conventional approach

Politics of alliance can be traced to the ancient times of the East and the West. Since it affects the...

pipeline nord stream pipeline nord stream
Energy4 hours ago

Nord Stream 2: To Gain or to Refrain? Why Germany Refuses to Bend under Sanctions Pressure

The chances of the sanctions war around Nord Stream 2 to rage on after the construction of the pipeline is...

South Asia8 hours ago

Rohingya crisis: How long will Bangladesh single-handedly assume this responsibility?

At least 8,60,000 Rohingya FDMNs, mostly women and children entered Bangladesh fleeing unbridled murder, arson and rape by the Tatmadaw...

South Asia10 hours ago

Covid19 mismanagement in India

The writer is of the view that the pandemic in India would have been less virulent if the Indian government...

Reports12 hours ago

Clean energy demand for critical minerals set to soar as the world pursues net zero goals

Supplies of critical minerals essential for key clean energy technologies like electric vehicles and wind turbines need to pick up...

Reports14 hours ago

Global e-commerce jumps to $26.7 trillion, fuelled by COVID-19

Parts of the online economy have boomed since COVID-19 began, while some pre-pandemic big-hitters have seen a reversal of their...

Finance14 hours ago

Reasons for Choosing Temporary and Permanent Industrial Buildings

Professional temporary solution providers have become very innovative in designing industrial buildings. While temporary industrial structures are made of lighter...

Trending