The Artificial Intelligence Race: U.S. China and Russia

Artificial intelligence (AI), a subset of machine learning, has the potential to drastically impact a nation’s national security in various ways. Coined as the next space race, the race for AI dominance is both intense and necessary for nations to remain primary in an evolving global environment. As technology develops so does the amount of virtual information and the ability to operate at optimal levels when taking advantage of this data. Furthermore, the proper use and implementation of AI can facilitate a nation in the achievement of information, economic, and military superiority – all ingredients to maintaining a prominent place on the global stage. According to Paul Scharre, “AI today is a very powerful technology. Many people compare it to a new industrial revolution in its capacity to change things. It is poised to change not only the way we think about productivity but also elements of national power.”AI is not only the future for economic and commercial power, but also has various military applications with regard to national security for each and every aspiring global power.

While the U.S. is the birthplace of AI, other states have taken a serious approach to research and development considering the potential global gains. Three of the world’s biggest players, U.S., Russia, and China, are entrenched in non-kinetic battle to out-pace the other in AI development and implementation. Moreover, due to the considerable advantages artificial intelligence can provide it is now a race between these players to master AI and integrate this capability into military applications in order to assert power and influence globally. As AI becomes more ubiquitous, it is no longer a next-generation design of science fiction. Its potential to provide strategic advantage is clear. Thus, to capitalize on this potential strategic advantage, the U.S. is seeking to develop a deliberate strategy to position itself as the permanent top-tier of AI implementation.

Problem

The current AI reality is near-peer competitors are leading or closing the gap with the U.S. Of note, Allen and Husain indicate the problem is exacerbated by a lack of AI in the national agenda, diminishing funds for science and technology funding, and the public availability of AI research. The U.S. has enjoyed a technological edge that, at times, enabled military superiority against near-peers. However, there is argument that the U.S. is losing grasp of that advantage. As Flournoy and Lyons indicate, China and Russia are investing massively in research and development efforts to produce technologies and capabilities “specifically designed to blunt U.S. strengths and exploit U.S. vulnerabilities.”

The technological capabilities once unique to the U.S. are now proliferated across both nation-states and other non-state actors. As Allen and Chan indicate, “initially, technological progress will deliver the greatest advantages to large, well-funded, and technologically sophisticated militaries. As prices fall, states with budget-constrained and less technologically-advanced militaries will adopt the technology, as will non-state actors.” As an example, the American use of unmanned aerial vehicles in Iraq and Afghanistan provided a technological advantage in the battle space. But as prices for this technology drop, non-state actors like the Islamic State is making noteworthy use of remotely-controlled aerial drones in its military operations. While the aforementioned is part of the issue, more concerning is the fact that the Department of Defense (DoD) and U.S. defense industry are no longer the epicenter for the development of next-generation advancements. Rather, the most innovative development is occurring more with private commercial companies. Unlike China and Russia, the U.S. government cannot completely direct the activities of industry for purely governmental/military purposes. This has certainly been a major factor in closing the gap in the AI race.

Furthermore, the U.S. is falling short to China in the quantity of studies produced regarding AI, deep-learning, and big data. For example, the number of AI-related papers submitted to the International Joint Conferences on Artificial Intelligence (IJCAI) in 2017 indicated China totaled a majority 37 percent, whereas the U.S. took third position at only 18 percent. While quantity is not everything (U.S. researchers were awarded the most awards at IJCAI 2017, for example), China’s industry innovations were formally marked as “astonishing.”For these reasons, there are various strategic challenges the U.S. must seek to overcome to maintain its lead in the AI race.

Perspectives

Each of the three nations have taken divergent perspectives on how to approach and define this problem. However, one common theme among them is the understanding of AI’s importance as an instrument of international competitiveness as well as a matter of national security. Sadler writes, “failure to adapt and lead in this new reality risks the U.S. ability to effectively respond and control the future battlefield.” However, the U.S. can longer “spend its way ahead of these challenges.” The U.S. has developed what is termed the third offset, which Louth and Taylor defined as a policy shift that is a radical strategy to reform the way the U.S. delivers defense capabilities to meet the perceived challenges of a fundamentally changed threat environment. The continuous development and improvement of AI requires a comprehensive plan and partnership with industry and academia. To cage this issue two DOD-directed studies, the Defense Science Board Summer Study on Autonomy and the Long-Range Research and Development Planning Program, highlighted five critical areas for improvement: (1) autonomous deep-learning systems,(2) human-machine collaboration, (3) assisted human operations, (4) advanced human-machine combat teaming, and (5) network-enabled semi-autonomous weapons.

Similar to the U.S., Russian leadership has stated the importance of AI on the modern battlefield. Russian President Vladimir Putin commented, “Whoever becomes the leader in this sphere (AI) will become the ruler of the world.” Not merely rhetoric, Russia’s Chief of General Staff, General Valery Gerasimov, also predicted “a future battlefield populated with learning machines.” As a result of the Russian-Georgian war, Russia developed a comprehensive military modernization plan. Of note, a main staple in the 2008 modernization plan was the development of autonomous military technology and weapon systems. According to Renz, “The achievements of the 2008 modernization program have been well-documented and were demonstrated during the conflicts in Ukraine and Syria.”

China, understanding the global impact of this issue, has dedicated research, money, and education to a comprehensive state-sponsored plan.  China’s State Council published a document in July of 2017 entitled, “New Generation Artificial Intelligence Development Plan.” It laid out a plan that takes a top-down approach to explicitly mapout the nation’s development of AI, including goals reaching all the way to 2030.  Chinese leadership also highlights this priority as they indicate the necessity for AI development:

AI has become a new focus of international competition. AI is a strategic technology that will lead in the future; the world’s major developed countries are taking the development of AI as a major strategy to enhance national competitiveness and protect national security; intensifying the introduction of plans and strategies for this core technology, top talent, standards and regulations, etc.; and trying to seize the initiative in the new round of international science and technology competition. (China’s State Council 2017).

The plan addresses everything from building basic AI theory to partnerships with industry to fostering educational programs and building an AI-savvy society.

Recommendations

Recommendations to foster the U.S.’s AI advancement include focusing efforts on further proliferating Science, Technology, Engineering and Math (STEM)programs to develop the next generation of developers. This is similar to China’s AI development plan which calls to “accelerate the training and gathering of high-end AI talent.” This lofty goal creates sub-steps, one of which is to construct an AI academic discipline. While there are STEM programs in the U.S., according to the U.S. Department of Education, “The United States is falling behind internationally, ranking 29th in math and 22nd in science among industrialized nations.” To maintain the top position in AI, the U.S. must continue to develop and attract the top engineers and scientists. This requires both a deliberate plan for academic programs as well as funding and incentives to develop and maintain these programs across U.S. institutions. Perhaps most importantly, the United States needs to figure out a strategy to entice more top American students to invest their time and attention to this proposed new discipline. Chinese and Russian students easily outpace American students in this area, especially in terms of pure numbers.

Additionally, the U.S. must research and capitalize on the dual-use capabilities of AI. Leading companies such as Google and IBM have made enormous headway in the development of algorithms and machine-learning. The Department of Defense should levy these commercial advances to determine relevant defense applications. However, part of this partnership with industry must also consider the inherent national security risks that AI development can present, thus introducing a regulatory role for commercial AI development. Thus, the role of the U.S. government with AI industry cannot be merely as a consumer, but also as a regulatory agent. The dangerous risk, of course, is this effort to honor the principles of ethical and transparent development will not be mirrored in the competitor nations of Russia and China.

Due to the population of China and lax data protection laws, the U.S. has to develop innovative ways to overcome this challenge in terms of machine-learning and artificial intelligence. China’s large population creates a larger pool of people to develop as engineers as well as generates a massive volume of data to glean from its internet users. Part of this solution is investment. A White House report on AI indicated, “the entire U.S. government spent roughly $1.1 billion on unclassified AI research and development in 2015, while annual U.S. government spending on mathematics and computer science R&D is $3 billion.” If the U.S. government considers AI an instrument of national security, then it requires financial backing comparable to other fifth-generation weapon systems. Furthermore, innovative programs such as the DOD’s Project Maven must become a mainstay.

Project Maven, a pilot program implemented in April 2017, was mandated to produce algorithms to combat big data and provide machine-learning to eliminate the manual human burden of watching full-motion video feeds. The project was expected to provide algorithms to the battlefield by December of 2018 and required partnership with four unnamed startup companies. The U.S. must implement more programs like this that incite partnership with industry to develop or re-design current technology for military applications. To maintain its technological advantage far into the future the U.S. must facilitate expansive STEM programs, seek to capitalize on the dual-use of some AI technologies, provide fiscal support for AI research and development, and implement expansive, innovative partnership programs between industry and the defense sector. Unfortunately, at the moment, all of these aspects are being engaged and invested in only partially. Meanwhile, countries like Russia and China seem to be more successful in developing their own versions, unencumbered by ‘obstacles’ like democracy, the rule of law, and the unfettered free-market competition. The AI Race is upon us. And the future seems to be a wild one indeed.

References

Allen, Greg, and Taniel Chan. “Artificial Intelligence and National Security.” Publication. Belfer Center for Science and International Affairs, Harvard University. July 2017. Accessed April 9, 2018. https://www.belfercenter.org/sites/default/files/files/publication/AI%20NatSec%20-%20final.pdf

Allen, John R., and Amir Husain. “The Next Space Race is Artificial Intelligence.” Foreign Policy. November 03, 2017. Accessed April 09, 2018. http://foreignpolicy.com/2017/11/03/the-next-space-race-is-artificial-intelligence-and-america-is-losing-to-china/.

China. State Council. Council Notice on the Issuance of the Next Generation Artificial Intelligence Development Plan. July 20, 2017. Translated by RogierCreemers, Graham Webster, Paul, Paul Triolo and Elsa Kania.

Doubleday, Justin. 2017. “Project Maven’ Sending First FMV Algorithms to Warfighters in December.” Inside the Pentagon’s Inside the Army 29 (44). Accessed April 1, 2018.https://search-proquest-com.ezproxy2.apus.edu/docview/1960494552?accountid=8289.

Flournoy, Michèle A., and Robert P. Lyons. “Sustaining and Enhancing the US Military’s Technology Edge.” Strategic Studies Quarterly 10, no. 2 (2016): 3-13. Accessed April 12, 2018. http://www.jstor.org/stable/26271502.

Gams, Matjaz. 2017. “Editor-in-chief’s Introduction to the Special Issue on “Superintelligence”, AI and an Overview of IJCAI 2017.” Accessed April 14, 2018. Informatica 41 (4): 383-386.

Louth, John, and Trevor Taylor. 2016. “The US Third Offset Strategy.” RUSI Journal 161 (3): 66-71. DOI: 10.1080/03071847.2016.1193360.

Sadler, Brent D. 2016. “Fast Followers, Learning Machines, and the Third Offset Strategy.” JFQ: Joint Force Quarterly no. 83: 13-18. Accessed April 13, 2018. Academic Search Premier, EBSCOhost.

Scharre, Paul, and SSQ. “Highlighting Artificial Intelligence: An Interview with Paul Scharre Director, Technology and National Security Program Center for a New American Security Conducted 26 September 2017.” Strategic Studies Quarterly 11, no. 4 (2017): 15-22. Accessed April 10, 2018.http://www.jstor.org/stable/26271632.

“Science, Technology, Engineering and Math: Education for Global Leadership.” Science, Technology, Engineering and Math: Education for Global Leadership. U.S. Department of Education. Accessed April 15, 2018. https://www.ed.gov/stem.

Ecatarina Garcia
Ecatarina Garcia
Ecatarina Garcia is an Instructor in the Air Force’s Intelligence Officer Course where she instructs initial skills training on topics such as Signals Intelligence, Cyber, Human Intelligence, Surveillance and Reconnaissance (ISR) foundations and applied ISR to the Air Force’s newest Intelligence Officer students. She has been a Network Fusion Analyst for the Air Force for 13 years and has supported various operations concerning Iraq, Afghanistan, Syria, Yemen, and Russia. She is currently a doctoral student in the American Military University’s inaugural Global Security and Strategic Intelligence doctoral program.