Connect with us

Energy

US budget bill may help carbon capture get back on track

Published

on

Authors: Simon Bennett and Tristan Stanley

The 2018 US Budget Bill, passed by the House and Senate in mid-February, will shape funding for energy technologies for the next decade. Alongside the extension of renewable tax credits and credits for energy efficiency, nuclear and fuel cells, the bill contains a provision that could provide the first significant stimulus to the global fortunes of carbon capture for several years. It is an example of how relatively small policy incentives can tip the scales towards investment when the infrastructure and industrial conditions are already in place, as the United States is leveraging an existing market and pipeline network for enhanced oil recovery (EOR).

The Budget Bill aims to stimulate investment in carbon capture by expanding incentives to companies that can use captured CO2 and reduce emissions as a result. It raises the existing so-called “45Q” tax credit for storing CO2 permanently underground from USD 22 today to USD 50 in 2026. The figure below shows the level of credit available for different combinations of CO2 sources and uses.

IEA analysis suggests it could trigger the largest surge in carbon capture investment of any policy instrument to date. Based on the above levels of revenue support for commercial carbon capture projects, we estimate that the tax credit could lead to capital investment on the order of USD 1 billion over the next six years, potentially adding 10 to 30 million tonnes or more of additional CO2 capture capacity, potentially increasing oil production by 50 to 100 thousand barrels per day. This would increase total global carbon capture by around two thirds and, by incentivising industry to find the lowest-cost projects, could be cheaper than projects already operating around the world. The annual cost to the US taxpayer by 2026, supporting CAPEX and OPEX, would be under USD 800 million.

Carbon capture refers to the separation of carbon dioxide (CO2) from industrial processes before it can be released to the atmosphere and contribute to climate change. It is a key part of the climate change mitigation toolbox because it can tackle emissions sources for which no other technologies are out of the lab and commercially available. These include industrial processes for production of steel, cement and a range of fuels, from gasoline to bioethanol and hydrogen. By retrofitting carbon capture to existing polluting facilities like coal power stations, they have the option of continuing operation with lower emissions, potentially overcoming political and economic obstacles to system transformation.

Of course, something must be done once the carbon is captured. Very large volumes can be injected deep underground and safely trapped for the long term. CO2 can also be trapped underground while being used in enhanced oil recovery (EOR), for which 65 million tonnes are purchased each year by the oil and gas industry and injected into oil fields to increase their productivity. Today, 80% of this CO2 comes from natural underground CO2 deposits and its use has no beneficial impact on greenhouse gas emissions reduction. Using captured CO2 that would otherwise have been emitted instead of natural CO2 therefore gives an environmental benefit and, extending the life of existing oilfields. Besides EOR, smaller volumes of CO2 can be purchased for economic use in chemical processes but may not offer the same level of emissions reduction as underground storage if the process is energy intensive or the final product is combusted, releasing CO2 again.

For achieving the goals set out in the Paris Agreement on Climate Change, any boost for carbon capture utilisation and storage (CCUS) would be welcome. The IEA recently noted that there has been a slump in new projects, with no new projects in the pipeline for construction. The US has been a clear leader accounting for around half of the total investment in CCUS in the decade to 2017.

The biggest opportunities are likely to be in the capture of CO2 from hydrogen plants at refineries and from natural gas processing facilities. Along with hydrogen production at fertilizer plants and bioethanol mills, these represent the lowest cost sources of CO2 at large scale and, unlike the fertilizer and bioethanol industries; they tend to be located close to existing CO2 pipelines for transporting CO2 to oilfields. In general, the lowest cost opportunities for avoiding emissions via CCUS reflect the concentration of CO2 in the flue gases.

Deployment of new carbon capture facilities in these sectors would reflect experience to date. Three quarters of the CO2 capture capacity built in the last decade and operating today has been on hydrogen production, gas processing and ethanol fermentation, all high purity sources of CO2. This represents almost half of all investment in CCUS made in the last decade, providing a strong indication of the sectors for CCUS that are favoured by the market. Twenty nine million tonnes of CO2 are captured today from large industrial sources, 87% of these are used for EOR, of which 78% are in the US.

The overall impact of the 45Q tax credit on stimulating a more sustainable CCUS industry will depend on a number of uncertain factors. We think the following factors are mostly upside risks:

CO2 demand for EOR

Our estimate of the impact of the tax credit assumes that neither CO2 demand nor supply are strongly limiting factors. The 45Q incentive should reduce the price of CO2 from carbon capture facilities to a level in line with that from natural CO2 deposits and unlock demand that is currently limited by the constraints on natural CO2. Taking these constraints into account, the shift of the supply curve resulting from this price reduction should ensure that any future EOR growth is based on captured CO2, not further production of natural CO2 that is already trapped harmlessly underground. From the supply side, it seems feasible that the construction of carbon capture projects could ramp up quickly enough by 2024 to meet much of this demand as long as CO2 offtake contracts and pipeline extensions can be put in place to trigger investment. Ultimately, however, this will depend on the evolution of the oil price – which is currently below the level needed for some, but not all, EOR projects – and the allocation of capital between light tight oil plays and EOR at mature fields.

CO2 demand for non-EOR uses

While the new legislation opens up the tax credit to industrial uses of CO2 – and, by changing the terminology, to industrial uses of carbon monoxide (CO) – the extent of uptake from these businesses is uncertain, and will likely be limited. In addition to being in construction by 2024, three conditions need to be satisfied to claim the credit: the carbon oxide would have otherwise been released to the air; over 25 000 tonnes per year from each carbon capture facility must be converted to products; a life cycle assessment by the regulator must show a benefit to the climate and the tax credit reduced accordingly if the benefit is lower than for long-term CO2 storage.

For carbon monoxide, which already has economic value as a fuel and chemical, we think the tax credit will not be high enough to divert much to new uses. For example, $35 per tonne of CO is around $12 per MWh, so it would not outbid the fuel value of CO. Using CO2 to convert hydrogen to hydrocarbon fuels could potentially exceed the annual volume condition by 2026, to help overcome the difficulties with storing electricity as hydrogen, but this will have a harder time with the life cycle assessment condition. Because the carbon is released when the fuel is burned, we foresee less than half of the tax credit (no more than $17) being available for such uses, which would probably need to be combined with other incentives to kick start an industry (a price of €300 per tonne was suggested by German industry).

The speed with which dedicated CO2 storage sites can be developed

Given that it can take 5-10 years to develop a storage site, with considerable capital put at risk upfront, we expect most CO2 captured to be used for EOR in the near term. Dedicated storage sites, particularly in regions without CO2 pipelines or EOR production, may start to come on line as the tax credit approaches $50. One of the biggest opportunities for using the 45Q tax credit is to capture CO2 from bioethanol plants, which are not only numerous in the United States but emit CO2 of biogenic origin –as a result, storing this CO2 effectively pumps CO2 out of the atmosphere. Many of these plants are not near CO2 pipelines for EOR but the CO2 could be stored permanently underground and qualify for the higher level of tax credit, as at Decatur in Illinois. $22-52 is certainly enough to cover the levelised costs of CO2 storage over the long term, but the geology is not ideal in every location.

Longer term developments

The level of credit rises over time, and then is inflation linked after 2026. As such, 45Q will have limited uptake in the next few years and investment will target carbon capture projects coming online in the mid-2020s, when the higher level of tax credits will be available. Any electricity sector projects – such as coal or gas power plants – would not be expected until the second half of next decade and, even at USD 50, would be limited in number without additional policy measures. Policy measures that could combine with 45Q to significantly multiply its uptake include low carbon fuel standards, in discussion in California, and modifications to the treatment of private activity bonds and master limited partnerships in this area. For direct capture of CO2 from the air, which has estimated costs well in excess of $200 per tonne, a higher level of additional policy support would likely be needed. Technologists with plans to remove carbon from the atmosphere will likely see 45Q as a “nice-to have”, rather than a cue to establish a market for guilt-free CO2. In a supportive move on the other side of the Atlantic, EU legislators agreed in January 2018 to let fuels produced from hydrogen combined with CO2 count towards renewable policy goals only if the CO2 is captured from ambient air.

*Tristan Stanley, IEA Energy Technology Analyst

Source: IEA

Continue Reading
Comments

Energy

Oil and the new world order: China, Iran and Eurasia

Published

on

The world oil market will undergo a fundamental change in the future. Choosing petrodollars or oil wars is no longer a question that can be answered. With the Strategic Agreement on the Comprehensive Economic and Security Partnership between China and Iran officially signed by the Foreign Ministers of both countries in Tehran on March 27, 2021, the petrodollar theorem is broken and the empire built by the US dollar is cracked.

This is because the petrodollar has not brought substantial economic development to the oil-producing countries in the Middle East during over half a century of linkage to the US dollar.

The Middle East countries generally have not their own industrial systems. The national economies are heavily dependent on oil exports and imports of cereals and industrial products. The national finances are driven by the US dollar and the financial system that follows it.

If the Middle East countries wanted to escape the control of the dollar, they should face the threat of war from the United States and its allies – things we have seen over and over again. Just think of Saddam Hussein being supported when he was fighting Iran and later being Public Enemy No. 1 when he started trading oil in euros.

The West has always wanted the Middle East to be an oil ‘sacred cow’ and has not enabled it to develop its own modern industrial system: the lack of progress in the Middle East was intended as long-term blackmail.

In the Western system of civilisation based on exchange of views and competition, the West is concerned that Iran and the entire Middle East may once again restore the former glory and hegemony of the Persian, Arab and Ottoman empires.

China is facing the exploitation of the global oil market and the threat of its supply disruption. Relying on industrial, financial, and military strength, Europe and the United States control the oil production capital, trade markets, dollar settlements, and global waterways that make up the entire petrodollar world order, differentiating China and the Middle East and dividing the world on the basis of the well-known considerations. You either choose the dollar or you choose war – and the dollar has long been suffering.

Just as in ancient times nomadic tribes blocked the Silk Road and monopolised trade between East and West, Europe and the United States are holding back and halting cooperation and development of the whole of Asia and the rest of the planet. Centuries ago, it was a prairie cavalry, bows, arrows and scimitars: today it is a navy ship and a financial system denominated in dollars.

Therefore, China and Iran, as well as the entire Middle East, are currently looking for ways to avoid middlemen and intermediaries and make the difference. If there is another strong power that can provide military security and at the same time offer sufficient funds and industrial products, the whole Middle East oil can be freed from the dominance of the dollar and can trade directly to meet demand, and even introduce new modern industrial systems.

Keeping oil away from the US dollar and wars and using oil for cooperation, mutual assistance and common development is the inner voice of the entire Middle East and developing countries: a power that together cannot be ignored in the world.

The former Soviet Union had hoped to use that power and strength to improve its system. However, it overemphasised its own geostrategic and paracolonial interests – turning itself into a social-imperialist superpower competing with the White House. Moreover, the USSR lacked a cooperative and shared mechanism to strengthen its alliances, and eventually its own cronies began to rebel as early as the 1960s.

More importantly – although the Soviet Union at the time could provide military security guarantees for allied countries – it was difficult for it to provide economic guarantees and markets, although the Soviet Union itself was a major oil exporter. The natural competitive relationship between the Soviet Union and the Middle East, as well as the Soviet Union’s weak industrial capacity, eventually led to the disintegration of the whole system, starting with the defection of Sadat’s Egypt in 1972. Hence the world reverted to the unipolarised dollar governance once the Soviet katekon collapsed nineteen years later.

With the development and rise of its economy, however, now China has also begun to enter the world scene and needs to establish its own new world order, after being treated as a trading post by Britain in the 19th century, later divided into zones of influence by the West and Japan, and then quarantined by the United States after the Second World War.

Unlike the US and Soviet world order, China’s proposal is not a paracolonial project based on its own national interests, nor is it an old-fashioned “African globalisation” plan based on multinationals, and it is certainly not an ideological export.

For years, there has been talk of Socialism with Chinese characteristics and certainly not of attempts to impose China’s Marxism on the rest of the world, as was the case with Russia. China, instead, wishes to have a new international economic order characterised by cooperation, mutual assistance and common development.

Unlike the Western civilisation based on rivalry and competition, the Eastern civilisation, which pays more attention to harmony without differences and to coordinated development, is trying to establish a new world economic order with a completely different model from those that wrote history in blood.

Reverting to the previous treaty, between the US dollar and the war, China has offered Iran and even the world a third choice. China seems increasingly willing to exist as a service provider. This seems to be more useful for China, first of all to solve its own problems and not to get involved in endless international disputes.

It can thus be more accepted by all countries around the world and unite more States to break the joint encirclement of the “democratic” and liberal imperialism of Europe and the United States.

Consequently, China and Iran – whose origins date back almost to the same period – met at a critical moment in history. According to the Strategic Agreement on Comprehensive Economic and Security Partnership between China and Iran, China will invest up to 400 billion dollars in dozens of oil fields in Iran over the next 25 years, as well as in banking, telecommunications, ports, railways, healthcare, 5G networks, GPS, etc.

China will help Iran build the entire modern industrial system. At the same time, it will receive a heavily discounted and long-term stable supply of Iranian oil. The Sino-Iranian partnership will lay the foundations for a proposed new world order, with great respect for Eastern values, not based on some failed, decadent and increasingly radicalising principles.

Faced with the value restraint and the pressure of sanctions from the United States and Europe, China is seeking to unite the European third Rome, Indo-European Iran, the second Rome and the five Central Asian countries to create a powerful geoeconomic counterpart in the hinterland of Eurasia.

Continue Reading

Energy

The stages and choices of energy production from hydrogen

Published

on

There are three main ways to use hydrogen energy:

1) internal combustion;

2) conversion to electricity using a fuel cell;

3) nuclear fusion.

The basic principle of a hydrogen internal combustion engine is the same as that of a gasoline or diesel internal combustion engine. The hydrogen internal combustion engine is a slightly modified version of the traditional gasoline internal combustion engine. Hydrogen internal combustion burns hydrogen directly without using other fuels or producing exhaust water vapour.

Hydrogen internal combustion engines do not require any expensive special environment or catalysts to fully do the job – hence there are no problems of excessive costs. Many successfully developed hydrogen internal combustion engines are hybrid, meaning they can use liquid hydrogen or gasoline as fuel.

The hydrogen internal combustion engine thus becomes a good transition product. For example, if you cannot reach your destination after refuelling, but you find a hydrogen refuelling station, you can use hydrogen as fuel. Or you can use liquid hydrogen first and then a regular refuelling station. Therefore, people will not be afraid of using hydrogen-powered vehicles when hydrogen refuelling stations are not yet widespread.

The hydrogen internal combustion engine has a small ignition energy; it is easy to achieve combustion – hence better fuel saving can be achieved under wider working conditions.

The application of hydrogen energy is mainly achieved through fuel cells. The safest and most efficient way to use it is to convert hydrogen energy into electricity through such cells.

The basic principle of hydrogen fuel cell power generation is the reverse reaction of electrolysis of water, hydrogen and oxygen supplied to the cathode and anode, respectively. The hydrogen spreading – after the electrolyte reaction – makes the emitted electrons reach the anode through the cathode by means of an external load.

The main difference between the hydrogen fuel cell and the ordinary battery is that the latter is an energy storage device that stores electrical energy and releases it when needed, while the hydrogen fuel cell is strictly a power generation device, like a power plant.

The same as an electrochemical power generation device that directly converts chemical energy into electrical energy. The use of hydrogen fuel cell to generate electricity, directly converts the combustion chemical energy into electrical energy without combustion.

The energy conversion rate can reach 60% to 80% and has a low pollution rate. The device can be large or small, and it is very flexible. Basically, hydrogen combustion batteries work differently from internal combustion engines: hydrogen combustion batteries generate electricity through chemical reactions to propel cars, while internal combustion engines use heat to drive cars.

Because the fuel cell vehicle does not entail combustion in the process, there is no mechanical loss or corrosion. The electricity generated by the hydrogen combustion battery can be used directly to drive the four wheels of the vehicle, thus leaving out the mechanical transmission device.

The countries that are developing research are aware that the hydrogen combustion engine battery will put an end to pollution. Technology research and development have already successfully produced hydrogen cell vehicles: the cutting-edge car-prucing industries include GM, Ford, Toyota, Mercedes-Benz, BMW and other major international companies.

In the case of nuclear fusion, the combination of hydrogen nuclei (deuterium and tritium) into heavier nuclei (helium) releases huge amounts of energy.

Thermonuclear reactions, or radical changes in atomic nuclei, are currently very promising new energy sources. The hydrogen nuclei involved in the nuclear reaction, such as hydrogen, deuterium, fluorine, lithium, iridium (obtained particularly from meteorites fallen on our planet), etc., obtain the necessary kinetic energy from thermal motion and cause the fusion reaction.

The thermonuclear reaction itself behind the hydrogen bomb explosion, which can produce a large amount of heat in an instant, cannot yet be used for peaceful purposes. Under specific conditions, however, the thermonuclear reaction can achieve a controlled thermonuclear reaction. This is an important aspect for experimental research. The controlled thermonuclear reaction is based on the fusion reactor. Once a fusion reactor is successful, it can provide mankind with the cleanest and most inexhaustible source of energy.

The feasibility of a larger controlled nuclear fusion reactor is tokamak. Tokamak is a toroidal-shaped device that uses a powerful magnetic field to confine plasma. Tokamak is one of several types of magnetic confinement devices developed to produce controlled thermonuclear fusion energy. As of 2021, it is the leading candidate for a fusion reactor.

The name tokamak comes from Russian (toroidal’naja kamera s magnitnymi katuškami: toroidal chamber with magnetic coils). Its magnetic configuration is the result of research conducted in 1950 by Soviet scientists Andrei Dmitrievič Sakharov (1921-1989) and Igor’ Evgen’evič Tamm (1895-1971), although the name dates back more precisely to 1957.

At the centre of tokamak there is a ring-shaped vacuum chamber with coils wound outside. When energized, a huge spiral magnetic field is generated inside the tokamak, which heats the plasma inside to a very high temperature, which achieves the purpose of nuclear fusion.

Energy, resources and environmental problems urgently need hydrogen energy to solve the environmental crisis, but the preparation of hydrogen energy is not yet mature, and most of the research on hydrogen storage materials is still in the exploratory laboratory stage. Hydrogen energy production should also focus on the “biological” production of hydrogen.

Other methods of hydrogen production are unsustainable and do not meet scientific development requirements. Within biological production, microbial production requires an organic combination of genetic engineering and chemical engineering so that existing technology can be fully used to develop hydrogen-producing organisms that meet requirements as soon as possible. Hydrogen production from biomass requires continuous improvement and a vigorous promotion of technology. It is a difficult process.

Hydrogen storage focused on the discovery of new aspects of materials or their preparation is not yet at large-scale industrial level. Considering different hydrogen storage mechanisms, and the material to be used, also needs further study.

Furthermore, each hydrogen storage material has its own advantages and disadvantages, and most storage material properties have the characteristics that relate to adductivity and properties of a single, more commonly known material.

It is therefore believed that efforts should be focused on the development of a composite hydrogen storage material, which integrates the storage advantages of multiple individual materials, along the lines of greater future efforts.

Continue Reading

Energy

The advantages of hydrogen and Israel’s warnings

Published

on

Hydrogen is the most common element in nature. It is estimated to make up 75% of the mass of the universe. Except for that contained in air, it is primarily stored in water in the form of a compound, and water is the most widely distributed substance on earth.

Hydrogen has the best thermal conductivity of all gases – i.e. ten times higher than most of them – and it is therefore an excellent heat transfer carrier in the energy industry.

Hydrogen has good combustion performance, rapid ignition, and has a wide fuel range when mixed with air. It has a high ignition point and rapid combustion rate.

Except for nuclear fuels, the calorific value of hydrogen is the highest among all fossil and chemical fuels, as well as biofuels, reaching 142.35 kJ/kg. The calorie per kilogram of hydrogen burned is about three times that of gasoline and 3.9 times that of alcohol, as well as 4.5 times that of coke.

Hydrogen has the lightest weight of all elements. It can appear as gas, liquid, or solid metal hydride, which can adapt to different storage and transport needs and to various application environments.

Burning hydrogen is cleaner than other fuels –  besides generating small amounts of water – and does not produce hydrogen azide as carbon monoxide, carbon dioxide (harmful to the environment), hydrocarbons, lead compounds and dust particles, etc. A small amount of hydrogen nitride will not pollute the environment after proper treatment, and the water produced by combustion can continue to produce hydrogen and be reused repeatedly.

Extensive use practices show that hydrogen has a record of safe use. There were 145 hydrogen-related accidents in the United States between 1967 and 1977, all of which occurred in petroleum refining, the chlor-alkali industry, or nuclear power plants, and did not really involve energy applications.

Experience in the use of hydrogen shows that common hydrogen accidents can be summarized as follows: undetected leaks; safety valve failure; emptying system failure; broken pipes, tubes or containers; property damage; poor replacement; air or oxygen and other impurities left in the system; too high hydrogen discharge rate; possible damage of pipe and tube joints or bellows; accidents or tipping possibly occurring during the hydrogen transmission process.

These accidents require two additional conditions to cause a fire: one is the source of the fire and the other is the fact that the mixture of hydrogen and air or oxygen must be within the limits of the possibility of fires or violent earthquakes in the local area.

Under these two conditions, an accident cannot be caused if proper safety measures are established. In fact, with rigorous management and careful implementation of operating procedures, most accidents do not theoretically occur.

The development of hydrogen energy is triggering a profound energy revolution and could become the main source of energy in the 21st century.

The United States, Europe, Japan, and other developed countries have formulated long-term hydrogen energy development strategies from the perspective of national sustainable development and security strategies.

Israel, however, makes warning and calls for caution.

While the use of hydrogen allows for the widespread penetration of renewable energy, particularly solar and wind energy – which, due to storage difficulties, are less available than demand – Israeli experts say that, despite its many advantages, there are also disadvantages and barriers to integrating green hydrogen into industry, including high production costs and high upfront investment in infrastructure.

According to the Samuel Neaman Institute’s Energy Forum report (April 11, 2021; authors Professors Gershon Grossman and Naama Shapira), Israel is 7-10 years behind the world in producing energy from clean hydrogen.

Prof. Gideon Friedman, actingchief scientist and Director of Research and Development at the Ministry of Energy, explains why: “Israel has a small industry that is responsible for only 10% of greenhouse gas emissions – unlike the world where they are usually 20% – and therefore the problems of emissions in industry are a little less acute in the country.”

At a forum held prior to the report’s presentation, senior officials and energy experts highlighted the problematic nature of integrating clean hydrogen into industry in Israel.

Dr. Yossi Shavit, Head of the cyber unit in industry at the Ministry of Environmental Protection, outlined the risks inherent in hydrogen production, maintenance and transportation, including the fact that it is a colourless and odourless gas that makes it difficult to detect a leak. According to Dr. Shavit, hydrogen is a hazardous substance that has even been defined as such in a new regulation on cyber issues published in 2020.

Dr. Shlomo Wald, former chief scientist at the Ministry of Infrastructure, argued that in the future hydrogen would be used mainly for transportation, along with electricity.

Prof. Lior Elbaz of Bar-Ilan University said that one of the most important things is the lack of laws: “There is no specific regulation for hydrogen in Israel, but it is considered a dangerous substance. In order for hydrogen to be used for storage and transportation, there needs to be a serious set of laws that constitute a bottleneck in our learning curve.” “Israel has something to offer in innovation in the field, but government support will still be needed in this regard – as done in all countries – and approximately a trillion dollars in the field of hydrogen is expected to be invested in the next decade.”

Although the discussion was mainly about Israel’s delay in integrating clean hydrogen into the industry, it has emerged that Sonol (Israel’s fuel supplier ranking third in the country’s gas station chain) is leading a project, together with the Ministry of Transport, to establish Israel’s first hydrogen refuelling station. “We believe there will be hydrogen transportation in Israel for trucks and buses,” said Dr. Amichai Baram, Vice President of operations at Sonol. “Hydrogen-powered vehicles for the country – albeit not really cheap in the initial phase – and regulations promoted in the field, both for gas stations and vehicles.”

Renewables account for only 6% of Israel’s energy sources and, according to the latest plans published by the Ministry of Energy and adopted by the government, the target for 2030 is 30%.

This is an ambitious goal compared to reality, and also far from the goal of the rest of the countries in the world that aim at energy reset by 2050.

The authors of the aforementioned report emphasize that fully using the clean hydrogen potential is key to achieving a higher growth target for Israel.

According to recommendations, the State should critically examine the issue in accordance with Israel’s unique conditions and formulate a strategy for the optimal integration of hydrogen into the energy economy.

Furthermore, it must support implementation, both through appropriate regulations and through the promotion of cooperation with other countries and global companies, as well as through investment in infrastructure, and in research and development, industry and in collaboration with the academic world.

There are countries in Europe or the Middle East that have already started green energy production projects, and finally it was recommended to work to develop Israeli innovations in the field, in collaboration with the Innovation Authority and the Ministry of Energy.

Continue Reading

Publications

Latest

Trending