Connect with us

Science & Technology

High-speed rail presents major opportunities for decarbonisation of transport

Published

on

High-speed rail (HSR) passenger activity totalled 625 billion passenger kilometres in 2015 with China, Europe and Japan together accounting for 95% of the global total. HSR is also the fastest growing passenger rail transport service worldwide – while global high-speed rail activity has grown steadily since 2005, growth accelerated to nearly 70% over 2013 to 2015, mainly as a result of a surge in China.

This shift to HSR represents an opportunity as the rail sector can play a key role in reducing CO2 emissions from transport, particularly in being able to displace short haul aviation.

The efficiency of rail is significant in relation to other modes of transport. For example, the railway sector accounted for over 6% of global passenger transport activity in 2015, yet was responsible for less than 2% of transport final energy demand and just over 4% of CO2 emissions from the transport sector. This is due to not only better energy efficiency of the rail sector compared to the road sector, but also a continued increase in rail’s dependence on electricity – and particularly renewables.

Despite these obvious efficiency benefits, the share of passenger transport by rail has fallen over the past decades in Europe and North America relative to other modes. However, Asia is another story, representing continued growth and 75% of global passenger rail activity in 2015.

Most of this growth can be attributed to the development of primarily high-speed rail networks in China, which have seen a remarkable acceleration over the past two decades. This change was accompanied by significant increases of rail passenger-kilometres in Korea and the ASEAN region.

The HSR sector in China in particular has been growing faster and at a larger scale than in any other country. Over the past decade the Chinese share of HSR activity (in passenger kilometres) grew from 4% to 62% of the global total, reaching 386 billion passenger kilometres in 2015. With nearly 20,000 km of HSR lines in operation in 2016, China also accounts for around 60% of today’s global HSR network and 82% of the HSR track-kilometres built between 2005 and 2015.

In 2016, nearly 11,000 km of HSR lines were still under construction and an additional 1500 km of lines were planned. This will raise the total high-speed rail network extension to 31,000 km by 2020, doubling the value of 2014. The Chinese government’s target is to keep expanding and upgrading the rail network so that all Chinese cities with more than half a million inhabitants, covering 90% of the Chinese population, benefit from rapid rail services.

HSR projects need to be accessible to a large volume of passengers in order to be economically sustainable, and are therefore more successful in densely populated areas. Many areas of China qualify for this because of their high population densities. Distances between Chinese cities also fall in the distance range (200 to 1000 km) allowing HSR to be highly competitive with aviation. When looking exclusively at the financial performance of HSR projects, only a select few HSR lines were profitable in 2016 including the Tokaido Shinkansen line operating between Tokyo and Shin-Osaka, the Paris-Lyon TGV line and the Beijing-Shanghai high-speed rail link.

Nevertheless, HSR delivers important economic and environmental benefits that are not directly related to project financing. One potentially significant environmental benefit is the capacity to shift passengers away from aviation, a mode of transport with much higher carbon intensity.

While overall changes in global aviation activity due to HSR are relatively small, there are several examples of how the introduction of HSR has led to significant reductions, or even the curtailment, of air traffic on specific routes. These include Paris-London, which saw a 56% reduction in air traffic volume from 1993-2010, Seoul-Busan (54% reduction from 2003-2011), and Taipei-Kaohsiung (80% reduction from 2005-2008).

Such a shift can result in major energy and CO2 emission savings, as the energy use per passenger kilometre of HSR is about 90% lower than aviation. In addition, HSR has the potential to emit very low or zero CO2 emissions if paired with decarbonised electricity generation systems.

Ultimately, HSR could be part of the strategy to meeting global climate ambitions. In fact, in a scenario aiming to meet the goals outlined by the Paris agreement, nearly all global aviation activity at short to medium distances (up to 1000 km) is substituted with HSR by 2060.

HSR tends to be competitive when journey times are shorter than or similar to those offered by aviation, a common feature for distances less than 700 km. HSR also tends to be more competitive in densely populated areas. Japan, where the Tokaido Shinkansen is one of few profitable HSR connections globally, has 127 million people living mainly in large cities with high population density along the coastal strip. This allows HSR to connect a chain of large cities so that flows between different cities are combined in a highly efficient network.

This connection of cities leads to a broader benefit of HSR: the possibility of so-called “agglomeration economies”, with positive feedbacks on economic growth and industrial competitiveness. These economies can emerge through a network of large, but not oversized, urban agglomerations. This in turn can lead to wealth redistribution, for example due to lower costs of living in satellite cities.

These recent trends of surging HSR passenger volumes in China align well with global imperatives to improve energy efficiency and energy diversification of transport. Yet bringing about a global shift of the magnitude necessary to meet Paris Agreement climate targets is a major challenge and will require adding HSR capacity at a rate beyond any observed so far.

Continue Reading
Comments

Science & Technology

Is your security compromised due to “Spy software” know how

Published

on

Spy software is often referred to as spyware is a set of programs that gives access to user/ administrators to track or monitor anyone’s smart devices (such as desktop, laptop, or smart phone) from anywhere across the globe.

Spyware is a threat, not only to businesses but individual users as well, since it can steal sensitive information and harm anyone’s network. It is controversial due to its frequent violation to end user’s privacy. It can attack user’s device, steal sensitive data (such as bank account or credit card information, or personal identity) or web data and share it with data firms, advertisers, or external users.

There are numerous online spyware designed for almost no cost, whose ultimate goal is to track and sell users data. Some spy software can install additional software and change the settings on user’s device, which could be difficult to identify.

Below are four main types of spyware, each has its unique features to track and record users activity:

Tracking cookies: These are the most common type of trackers, these monitor the user’s internet usage activities, such as searches, downloads, and history, for advertising and selling purposes.

System monitors: These spy software records everything on your device from emails, keystrokes, visited websites, chat-room dialogues, and much more.

Adware: This spyware is used for marketing purpose, it tracks users downloads and browser history, and suggests or displays the same or related products, this can often lead to slow device.

Trojan: This spyware is the most malicious software. It can be used to track sensitive information such as bank information or identification numbers.

Spyware can attack any operating system such as windows, android, or Apple. Windows operating systems are more prone to attack, but in past few years Apple’s operating systems are also becoming vulnerable to attacks.

According to a recent investigation by the Guardian and 16 other media organizations, found that there is a widespread and continuous abuse of NSO’s hacking spyware Pegasus, on Government officials, human rights activists, lawyers and journalists worldwide which was only intended to use against terrorists and criminals.

The research, conducted by the Pegasus technical partner Amnesty’s Security Lab, found traces of the Pegasus activity on 37 out of the 67 examined phones. Out of 37 phones, 34 were iPhones, and 23 showed signs of a Pegasus infection, while remaining 11 showed signs of attempted infection. However, only three out of 15 Android phones were infected by Pegasus software.

Attacks like the Pegasus might have a short shelf life, and are used to target specific individuals. But evidences from past have proved that attackers target large group of people and are often successful.

Below are the most common ways devices can become infected with spyware:

  • Downloading software or apps from unreliable sources or unofficial app publishers
  • Accepting cookies or pop-up without reading
  • Downloading or watching online pirated media content
  • Opening attachments from unfamiliar senders

Spyware can be extremely unsafe if you have been infected. Its damage can range from short term device issue (such as slow system, system crashing, or overheating device) to long-term financial threat.

Here’s what you can do protect your devices from spyware:

Reliable antivirus software: Firstly look for security solutions available on internet (some are available for free) and enable the antivirus software. If your system or device is already infected with virus, check out for security providers offering spyware identification and removal.

-For instance, you can install a toolkit (the Mobile Verification Tool or the MVT) provided by Amnesty International. This toolkit will alert you with presence of the Pegasus Spyware on your device.

-The toolkit scans the backup file of your device for any evidence of infection. It works on both Apple and Android operating systems, but is more accurate for Apple operating system.

-You can also download and run Norton Power Eraser a free virus removal tool.

Update your system regularly: Set up an update which runs automatically. Such automatic updates can not only block hackers from viewing your web or device activity, but can also eliminate software errors.

Be vigilant of cookies compliance: Cookies that records/ tracks users browsing habits and personally identifiable information (PII) are commonly known as adware spyware. Accept cookies only from reliable sites or download a cookie blocker.

Strong authentication passwords: Try to enable Multi-factor Authentication (MFA) wherever possible, or if not possible create different password for all accounts. Change your password for each account after a certain period of time.

-Password breaches can still occur with these precautions. In such case change your password immediately.

Be cautious of free software: Read the terms and conditions on software licenses, before accepting. Free software might be unlimited but, your data could be recorded with those free software’s.

Do not open any files from unknown or suspicious account: Do not open any email attachments or text on mobile from a suspicious, unknown, or untrustworthy source/number.

Conclusion:

Spyware could be extremely dangerous, however it can be prevented and removed by being precautious and using a trustworthy antivirus tool. Next gen technologies can also help in checking and removing malicious content. For instance, Artificial intelligence could aid the organizations identify malicious software, and frequently update its algorithms of patterns similar to predict future malware attacks.

Continue Reading

Science & Technology

Implementation of virtual reality and the effects in cognitive warfare

Published

on

Photo: Lux Interaction/Unsplash

With the increasing use of new technologies in warfare situations, virtual reality presents an opportunity for the domain of cognitive warfare. Nowadays, cognitive skills are treated equally as their physical counterparts, seeking to standardize new innovative techniques. Virtual reality (VR) can be used as a tool that can increase the cognitive capabilities of soldiers. As it is understandable in today’s terms, VR impacts the brain directly. That means that our visual organs (eyes) see one object or one surrounding area, but brain cells perceive and react to that differently. VR has been used extensively in new teaching methods because of the increased probability of improving the memory and learning capabilities of students.

Besides its theoretical teaching approach and improvement of learning, VR can be used systematically towards more practical skills. In medicine for example students can have a full medicine lesson on a virtual human being seeing the body projected in 3D, revolutionizing the whole field of medicine. If that can be used in the medical field, theoretically it will be possible to be used in combat situations, projecting a specific battlefield in VR, increasing the chances of successful engagement, and reducing the chance of casualties. Knowing your terrain is equally important as knowing your adversary.

The use of VR will also allow us to experience new domains relating to the physical health of a person. It is argued that VR might provide us with the ability to effectively control pain management. Since VR can stimulate visual senses, then it would be safe to say that this approach can have higher effectiveness in treating chronic pain, depression, or even PTSD. The idea behind this usage is that the brain itself is already powerful enough, yet sometimes when pain overwhelms us we tend to lose effectiveness on some of our senses, such as the visual sense. An agonizing pain can blurry our vision, something that we cannot control; unless of course theoretically, we use VR. The process can consist of different sounds and visual aids that can trick the mind into thinking that it is somewhere that might be the polar opposite of where it is. Technically speaking, the mind would be able to do that simply because it works as a powerful computer, where our pain receptors can override and actually make us think that we are not in such terrible pain.

Although the benefits of VR could be useful for our health we would still need to deal with problems that concern our health when we use a VR set.  It is possible that the brain can get overloaded with new information and the new virtual environments. VR poses some problems to some people, regarding the loss of the real environment and creating feelings of nausea or extreme headaches. As a result, new techniques from cognitive psychologists have emerged to provide a solution to the problem. New technologies have appeared that can desaturate colors towards the edge of the headset in order to limit the probability of visual confusion. Besides that, research shows that even the implementation of a virtual nose when someone wears a VR headset can prevent motion sickness, something that our brain does already in reality.

However, when it comes to combatants and the implementation of VR in soldiers, one must think of maybe more effective and fast solutions to eliminate the problems that concern the confusion of the brain. Usage of specific pharmaceuticals might be the key. One example could be Modafinil which has been prescribed in the U.S. since 1998 to treat sleep-related conditions. Researchers believe it can produce the same effects as caffeine. With that being said, the University of Oxford analyzed 24 studies, where participants were asked to complete complex assignments after taking Modafinil and found out that those who took the drug were more accurate, which suggests that it may affect higher cognitive functions.

Although some of its long-term effects are yet to be studied, Modafinil is by far the safest drug that can be used in cognitive situations. Theoretically speaking, if a long exposure to VR can cause headaches and an inability to concentrate, then an appropriate dose of Modafinil can counter the effects of VR. It can be more suitable and useful to use on soldiers, whose cognitive skills are better than civilians, to test the full effect of a mix of virtual technology and pharmaceuticals. VR can be a significant military component and a simulation training program. It can provide new cognitive experiences based on foreign and unknown terrains that might be difficult to be approached in real life. New opportunities arise every day with the technologies, and if anyone wanted to take a significant advantage over adversaries in the cognitive warfare field, then VR would provide a useful tool for military decision-making.

Continue Reading

Science & Technology

Vaccine Equity and Beyond: Intellectual Property Rights Face a Crucial Test

Published

on

research coronavirus

The debate over intellectual property rights (IPRs), particularly patents, and access to medicine is not new. IPRs are considered to drive innovation by protecting the results of investment-intensive R&D, yet arguably also foster inequitable access to affordable medicines.

In a global public health emergency such as the COVID-19 pandemic, where countries face acute shortages of life-saving vaccines, should public health be prioritized over economic gain and the international trade rules designed to protect IPRs?

The Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPs), to which all 164 member states of the World Trade Organization (WTO) are a party, establish minimum standards for protecting different forms of IPRs. 

In October 2020, India and South Africa – countries with strong generic drug manufacturing infrastructure – invoked WTO rules to seek a temporary waiver of IPRs (patents, copyrights, trade secrets, and industrial designs) on equipment, drugs, and vaccines related to the “prevention, containment or treatment of COVID-19.” A waiver would mean that countries could locally produce equipment and vaccines without permission from holders of IPRs. This step would serve to eliminate the monopolistic nature of IPRs that give exclusive rights to the holder of IPRs and enable them to impose procedural licensing constraints.

Brazil, Japan, the European Union (EU), and the United States (US) initially rejected the waiver proposal. That stance changed with the rise of new COVID-19 mutations and the associated increase in deaths, with several countries facing a public health crisis due to vaccine supply shortages. The position of many states began shifting in favor of the India-South Africa proposal, which now has the backing of 62 WTO members, with the US declaring support for the intent of the temporary waiver to secure “better access, more manufacturing capability, more shots in arms.” Several international bodies, the World Health Organization (WHO), and the UN Committee on Economic, Social and Cultural Rights have voiced support.

Some countries disagree about the specific IPRs to be waived or the mechanisms by which IPRs should be made available. The EU submitted a proposal to use TRIPS flexibilities such as compulsory licensing, while others advocate for voluntary licensing. The TRIPS Council is conducting meetings to prepare an amended proposal to the General Council (the WTO’s highest-level decision-making body in Geneva) by the end of July 2021.

The crisis in India illustrates the urgency of the situation. India produces and supplies Covishield, licensed by AstraZeneca; and Covaxin, which is yet to be included on the WHO’s Emergency Use Listing (EUL). Due to the devastating public health crisis, India halted its export of vaccines and caused a disruption in the global vaccine supply, even to the COVID-19 Vaccines Global Access (COVAX) program. In the meantime, the world’s poorest nations lack sufficient, critical vaccine supplies.

International law recognizes some flexibility in public health emergencies. An example would be the Doha Declaration on TRIPS and Public Health in 2001, which, while maintaining the commitments, stresses the need for TRIPS to be part of the wider national and international action to address public health problems. Consistent with that, the body of international human rights law, including the International Covenant on Economic, Social and Cultural Rights (ICESCR), protects the right to the highest attainable standard of health.

But as we race against time, the current IPR framework may not allow for the swift response required. It is the rigorous requirements before a vaccine is considered safe to use under Emergency Use Authorizations and procedural delays which illuminate why IPR waivers on already approved vaccines are needed. Capitalizing on the EUL’s approved vaccines that have proven efficacy to date and easing IPR restrictions will aid in the timely supply and access of vaccines.

A TRIPS waiver may not solve the global vaccine shortage. In fact, some argue that the shortages are not an inherent flaw in the IP regime, considering other supply chain disruptions that persist, such as the ones disrupting microchips, pipette tips, and furniture. However, given that patent licensing gives a company a monopoly on vaccine commercialization, other companies with manufacturing capacity cannot produce the vaccine to scale up production and meet supply demands.

Neither does a temporary waiver mean that pharmaceutical companies cannot monetize their work. States should work with pharmaceuticals in setting up compensation and insurance schemes to ensure adequate remuneration.

At the College of Law at Hamad Bin Khalifa University, our aim is to address today’s legal challenges with a future-oriented view. We see COVID-19 as a case study in how we respond to imminent and existential threats. As global warming alters the balance of our ecosystem, threats will cascade in a way that is hard to predict. When unpredictable health emergencies emerge, it will be human ingenuity that helps us overcome them. Even the global IP regime, as a legal system that regulates ideas, is being tested, and should be agile enough to respond in time, like the scientists who sprang into action and worked tirelessly to develop the vaccines that will soon bring back a semblance of normal life as we know it.

Continue Reading

Publications

Latest

Trending