Connect with us

Energy

Some Applications of Non Equilibrium Thermodynamics Thinking to Current Geopolitical Issues

Published

on

In recent decades, there has been a development of several related concepts, some under the category of thermodynamics, which may be applied, to some degree, to the current geopolitical scene.

One is the perception of organization in this universe as ordered energy flows. This perspective can be characterized as ‘‘non equilibrium thermodynamics”. Probably the foremost and broadest scale explicant of this way of looking at the universe is cosmologist Eric Chaisson, now at Harvard. One of his signature books is ‘Cosmic Evolution’ .

Chaisson quantifies energy flows, and relates them to structures, at stellar, galactic, planetary, and even life levels. He relates complexity, at each of these levels, to ‘energy rate densities’. Somewhat surprisingly, he points out that energy rate densities in life forms exceeds those of cosmic structures such as suns. He also identifies energy rate densities of different types of life organization, such as plants and animals, and even the structure of industrial human activities, such as cities, airplanes, etc.

On separate but related themes, explorations of concepts such as ‘hierarchy theory’ and ‘emergence’ have shown that all structures at the scale humans perceive are in a sense hierarchic. Simple atoms make up complex, heavy atoms, atoms make up complex elements often described as molecules and chemical species, molecular structures make up, or are involved in, life structures, single cells make up multicellular organisms, both single cells, at their level, and multicellular organisations make up what we tend to call social systems, and so forth. (e.g. in currently visible human terms, cities are clumped in States, or provinces, states in an United States, ‘nation states’ around the world in the United Nations; or at lower levels franchisees under franchisors, etc,) In this framework, each level of aggregation is seen as a system of relationships, and a differentiated unit at that level joins with other elements, or systems, in a set of stabilized relationships to form the next level of hierarchy.

All these ordered systems involve — or more accurately consist of — stabilized energy flows, or, equivalently, stable systems of relationships, in energy flows. A condensed public summary of this perspective, with citations, is available.

Insights which arise in this perspective include that all organization is combinatorial — combinations of elements. Relatedly, ‘emergent’ effects of any combination of elements upon other combinations which it encounters are the effects of the organization as a whole as distinguished from the effects of its components might have were they not bound in their particular organization. That is, all organized systems are identified and in effect measured, or given meaning, by other systems in terms of the relationships system-to-system, so to speak.

This is an highly condensed overview, but one can get further, and somewhat complementary, clues concerning the stream of thought by looking at some of the work involved in the International Big History Association, including some of its leading members such as Fred Spier and David Christian. This Association traces cosmic evolution from its origins through human historical processes, in a variety of ways and from a variety of perspectives. The Association is recently formed, and its work is evolving in form and content.

Another architectural insight has been offered by Mark Buchanan, in his book ‘Ubiquity’ , to the effect that, as far as he could identify, all phenomena seemed to fall on ‘power law’, or log normal, statistical distributions — wars, city sizes, wealth distributions, earthquakes, etc.   This author has suggested that this is because all ordered phenomena consist of, or arise from, correlational processes, and such correlational processes produce this sort of statistical distribution.

Lastly, for initial introduction, a set of theories, or concepts, called ‘maximum entropy production’ (MEP) suggests, in general layman’s conceptualization, that given a differential (e.g. heat, or temperature, differential), it will be dissipated by all available means, and at situation-quantifiable rates, with common statistical signatures.  

Now to human societies, and the relationships between them. Each society is a group, and a group of groups. For each of these groups to have sustained coherence, its constituents must have stable inter-se relationships, or systems of relationships. But for any given group or set of groups to coexist with others, rather than devouring or being devoured by others, they must work out modi vivendi, so to speak. They must somehow establish complementarities, or symbiotic relationships, or at least non-lethal sets of relationships. Each and all must have an energy basis — a flow of energy into and through the stable system of relationships.

In large scale agricultural society examples, all ‘empires’ are hierarchic, in the sense of being made up by a coordinating mechanism which maintains relationships between component elements.

In analysing any given society, or set of them, we have to follow the energy flows. Karl Marx’s thesis that societies are structured by their means of production translates into the view that any given society, or set of them, will have institutions (regular patterns of activity embodying energy flows) which feed off of, embody and maintain the energetics of the system.

‘Agricultural’ societies can be seen as group-organized means of harvesting the photosynthetic capture of energy by plants, plus the energy of other-animal harvesters of the plants (‘livestock’). ‘Industrial’ societies maintain the plant and animal harvesting base, but have taken flight, so to speak, by capturing stored and concentrated energy of the residues of past eons of plant life on earth.

Since this cache of stored plant energy is finite and its boundaries are visible, it increasingly appears that if the multibillion human complex thus created is to be maintained in some form, over decades and centuries, humans will have to move to reliance on artifactual photosynthesis (AKA ’solar energy’), supplemented by wind energy, tapping the energy of breakdowns of heavy, complex atoms (nuclear energy), and perhaps some trace additions of current and earth-stored biological photosynthesis. Perhaps the best references for the data and analysis underlying this perspective are an international review of renewable energy sources,   and a conceptually elegant report by Sandia Laboratory personnel.  

We currently tend to call this a ‘renewable’ energy society. But it can be seen as a larger scale, current technological, or artifactual, or human-mediated, direct harvesting of sunlight, bypassing the biological processes of other organisms, past and present. In addition there seems a likelihood of harvesting of the differentials created by differentials in sunlight on the Earth’s surface (wind energy), with limited additional sourcing.

We tend to think of this all as a human created and engineered mastering of energy flows. But let us try to look at it from the Universe’s point of view, were the Universe to bother itself, apart from creating ourselves, to have one. From a thermodynamics perspective, from Chaisson on down, one can consider that life itself was created as a means of channelling energy flows to reducing differentials caused by universal ordering, as proposed by Santa Fe Institute researchers.   Derivatively, all our institutions, being driven by energy differentials and flows, and ourselves, can be seen as expressions of thermodynamic forces. We are, from such a point of view, but the enablers of Chaisson’s energy density rate functions.  

Lest this expression be interpreted as a whimsy to attract attention, I will use it to make suggestions about how current and future societies may tend to work out.

Let us consider the turbulent Middle East. Also we can consider the Soviet Union, and nearby Euro-asian areas.

Assuming no system-wide catastrophic breakdown, the stored plant energy potentials of these areas have been and will continue to be tapped. Pipelines will be built. Streams of oil tankers will continue.

This does not mean that there will not be intrastate and interstate maneuvering about where, when, and at what rate. Water flows downhill. But humans make dams, channels, irrigation projects, etc. And we humans do a lot of squabbling about how to create and divide up participation in reservoirs and flow systems over and outside political boundaries. Elinor Ostrom was given a Nobel prize for her careful and extensive work on how such situations, particularly those involving economic ‘commons’, have been successfully managed. Her prescriptions are worth careful attention.

The fractured and fractious political organizations of the Persian Gulf area have been, to some extent, and are likely gradually to be shaped to allow these energy concentrations to be distributed, or, to use MEP logic, dissipated. If democracies cannot reliably be constructed, autocracies and dynasties will have to conform themselves to these requirements. If they cannot do so, then possibly ‘trusteeships’ might be constructed by the world’s hydrocarbon thirsty and consuming polities. The political entities in the area will be monitored for efficiency and stability. This may lead to assistance, if possible; reshaping if necessary: both from outside their boundaries, and, possibly to a lesser degree, from within.  

Though thinly populated in many of its parts, Russia will, from its vast and central position on the Eurasian land mass, continue to feed gas into the highly organized energy transformation and use systems of Europe, and perhaps also China. It will also continue to be a source of other resources. (There may be some question whether the Easternmost portion of Russia remains European oriented, or becomes Sinified to such an extent as to lead to rearrangement of the State identification and administration.)

Around the globe the hydrocarbon potentials available from fracturing rocks will also continue to be developed, geographically unevenly but widely, on and adjacent to several continents. The phasing will be partially gated over time by relative efficiencies as between the hydrocarbon pools of the Middle East, Venezuela, and Canada, and ‘shale’ systems elsewhere. And the extent and rate of rock mining for hydrocarbons may be affected by the efficiencies of emerging photovoltaics based energy systems. But the techniques and tools are in hand, so to speak, in use, and expansible at current and sufficiently rewarded EROEI (energy return on energy investment) ratios.

Two factors seem likely to limit, or boundary, these extractions from the energy concentrations of life’s past, other than exhaustion. One is the possibility that the atmospheric temperature effects of the gaseous emissions from freeing up all these hydrocarbons — particularly carbon dioxide — will so disrupt the organic processes of current life as to arrest the whole process. The other is, as noted, the apparent potential of tapping the vastly larger solar energy flux of Earth to entrain larger energy flows with lesser disruption of current life patterns.

The first potential limitation has engendered much attention, but limited current effect, other than to lead to some effort to manage replacement of hydrocarbon mining by tapping the global solar energy flux — ‘renewable energy’ technologies, including the ancillary and necessary technologies to make solar energy universal, convenient, and supportive of at least the current level of human activity.

Efforts to coordinate limitations on ‘greenhouse gas’ emissions may slow the rate of increase, but seem far short of capping or reducing such emissions in immediately upcoming decades.

The salient geopolitical consequences of this projected transition to artifactual solar energy are interesting in a number of respects, prominently two.

First, artifactual solar energy capture, like biological, is inherently geographically extensive. The capture systems may be on the whole more southerly (take note, Northern Europe), and less co-located with water (but still dependent on some water to keep the needed biological support mechanisms in place). Whether this leads to massive territory wars like those of the agricultural era remains to be seen. We had best hope not, and strive to avoid them, for urgent reason.

The scope, efficiency and sustainability of this artifactual photosynthetic system seems likely to depend upon a complex web of interconnected resource, processing, and exchange systems implemented by humans, as distinguished from self sustaining (if we do not too much interfere) plants, ocean oxygen emitters, and generally the vast web of biological processes which we call Nature. The combinatorics of this system, globally employed, will be complex, subtle and demanding — of us.

In other words, whatever the array of geographically defined governance systems, if the systems for replacement of ‘fossil’ energy support for humans are to be realized, humans are going to have to construct and durably maintain large, and probably at best global, cooperation systems.

We may characterize these systems in economic, social, institutional, and other terms. But if we are going to get, for example, silicon, lithium, iron, copper, aluminum, etc. from where they are first found, and do all the intricate dances of transporting them, cunningly shaping them into microscopically toleranced formats, in large volume and at large scale, covering them with sand made into glass (or not), and have them harvest energy for decades, we have to have sophisticated coordinating mechanisms (including markets, and thus also including financial markets). And if humans seek a sustainable future of abundance of the sort many humans now enjoy, we can’t be blundering about periodically, or widely, destroying parts of such interconnected systems at will or impulse (read, if you wish, ISIL).

Lastly, for the moment, the imperative for hierarchical construction suggests that central coordinating functions, like those now embodied by the United Nations, will continue to evolve.

I have suggested that the above general directions, or tendencies, emerge from a consideration of order building, non equilibrium thermodynamic forces. However, I cannot assure my fellow humans that life on Earth, and our human part of it, must necessarily realize all the potentials one can envisage. Life, and order building in it, works in probabilistic increments. Over several billions of years, Earthlife has advanced as a whole in mass and complexity, it now appears, but also suffered some catastrophic setbacks in the process.

Whether our species of language and tool wielding ape will be able to achieve and maintain — over centuries — global integration at high levels of energy-fed activity, with current or better levels of individual welfare, is thus very much an open question. We have no good reason to think that an Abrahamic God, or other general Universal Governor, has decreed success for our hopeful projections of organizational potentials of human life on this Earth at this time. We are on our own, in an evolutionary adventure. In Star Wars terms, the force(s) may be with us, but guarantees are not on order.      

This leads to questions about what those concerned with ‘diplomacy’, or forms of facilitating international concert, may need to focus on in order to foster the needed, but far from guaranteed, international coherence. Modern Diplomacy, as a publication, is oriented to this topic.

In a prior post in another publication, I attempted an outline of some major themes, or focal points. In very brief summary, I suggested that we be aware of the central importance of energy flows and hierarchical ordering tendencies, mentioned here, that participants will be required to focus on arrangements which yield sustained mutual benefit to the participating parties (in current parlance, ‘win-win’ solutions), that there need to be monitoring of and controls on parasitism of the coordinated system by the coordinators, or ‘elites’ in the systems, that sound, objective knowledge systems of the sort developed in the sciences, and published through ‘free speech’ and ‘free presses’, be maintained, and that there is a need for continuity in systems (as massive breakdowns in an highly industrialized world may be very difficult, if not impossible, fully to repair).

Some of these suggestions relate to a need to prevent ossified, myopic national and international structures evolving, milked unproductively by national and international elites, stifling the growth potentials of the global human (and life) community.

I also pointed out that however much we wish completely to equalize welfare results for all participants globally, the prevalence of ‘power laws’ in the Universe counsels that we will never be able to do so. The operational possibility to be sought is that the various elements of the system be better off than if there were no system. (The philosopher John Rawls addressed this criterion in a way when he suggested that one approve or disapprove of a given system as if one did not know where one would fit in it.) A refinement of this concept is that an optimal system is one in which no one can be made more well off without making someone else less well off. But this logic does not, strictly, imply that in all circumstances complete equality applies as to all system participants.

On the global scene, both State and non-state actors seek to encourage successful and sustainable global integration. Some current organizations target selected international objectives from time to time, such as, but not limited to, Citizens for Global Solutions, and other organizations seek to create a global ‘parliament’ to parallel and inform the United Nations, promote a global ‘rule of law’ at the UN level and non governmental organization level, promote economic freedom, protect human rights, as by indexing State performance in human rights protection, and inhibit corruption in various polities by indexing State success in doing so. This is only a very limited sketch of such organizations. Please feel free to point up others in any comments on this essay.

The concepts I suggest here provide some support for the specifics of such efforts. Given my background as an attorney, I suggest that the ‘rule of law’ can be justified as an universal requirement by appeal to the basic nature of ordered processes — that is, that there be regularity and thus predictability in component processes — and the requirement that participating elements, such as ‘elites’, do not advantage themselves at the expense of the regularity and efficiency of the whole (the generic word for this is ‘corruption’). This basis goes deeper than others conventionally offered.  

I would also note that ‘human rights’ activities can be justified, perhaps somewhat undramatically and colorlessly, by the requirement that participating human elements in social groups, such as States, be accorded those nutrients and potentials for action which allow them to function with some equilibrium and effect.  

How well are such efforts succeeding? In the IA Forum piece, this author, perhaps parochially, attempted to rate the performance of his own native country, the United States, in meeting these criteria,, or requirements. Readers of this article are invited to correct this rating, and self-evaluate the conformance of their own polities by these criteria, if so inclined.

The effort reflected in this paper to to re-conceptualize some of traditional ‘statecraft’ has resulted in a limited and general set of suggested approaches. Broader efforts can be undertaken. Having had some connection with the US State Department and its education program for its foreign service officers, this author has proposed that such institutions might consider fostering research organizations (in a loose parallel to the US Defense Department’s DARPA) to probe analytically the theoretical and practical underpinnings of State construction and interaction.

Continue Reading
Comments

Energy

Solar powering sustainable development in Asia and the Pacific

Armida Salsiah Alisjahbana

Published

on

The way energy is produced, distributed and used causes environmental damage – most visibly air pollution – that in turn harms people’s health. It is also one of the major drivers of climate change. Recognising this, countries are urgently looking to shift to more sustainable energy, but the transition has so far been slow. Put simply, our future depends on our ability to decarbonize our economies by the end of the century. This was recognised by the Paris climate agreement in 2015 and is central to the United Nations 2030 Agenda for Sustainable Development. Sustainable Development Goal 7 (SDG 7) sets countries the twin challenge of meeting new benchmarks in renewable energy and energy efficiency, while ensuring universal access to modern energy.

In Asia and the Pacific, progress towards SDG 7 needs to be accelerated. While 99 percent of the population is expected to have access to electricity by 2030, access to clean cooking fuels will reach only 70 percent of our region’s population, leaving far too many people exposed to the deadly impacts of indoor air pollution. Energy intensity – a measure of our economies’ energy efficiency – is set to decrease but will fall short of 2030 Agenda targets if no further action is taken. At the same time, the share of renewable energy in total energy consumption is only expected to reach 14 percent, well under the 22 percent share required.
Solar energy has a major part to play in closing these gaps. It is an opportunity we must seize for low carbon development, energy security and poverty alleviation. Because solar power can bring clean, emissions-free and evenly distributed energy. This is particularly relevant to Asia and the Pacific, where developing countries have abundant solar energy resources. Solar energy technology increasingly offers a cost-effective alternative to extending networks to outlying and often challenging geographical locations. A potential which has been captured by the Indian leadership’s ambition for “one world, one sun, one grid”.

Governments, the private sector and investors are now thinking over the horizon, planning for a more sustainable and low carbon future. The cost of renewable technologies, very much including solar power has dropped rapidly, bringing these solutions within reach. India now has the newest and cheapest solar technology of anywhere in the world. Mini-grids or standalone solar home systems can be deployed quickly and help reduce greenhouse gas emissions. Due in part to unsustainable subsidies and in part to inertia, coal fired electricity is set to continue to grow in the short to medium term, but wind and solar must play a much more substantial role sooner rather than later for us to have a chance of meeting the SDGs or achieving the aspirations of the Paris Agreement.

India is supporting this solar revolution. By founding and hosting the International Solar Alliance, it has moved decisively to increasing access to solar finance, lowering the cost of technology and building the solar skills needed among engineers, planners and administrators. But it has also set an unparalleled deployment target for solar power generation. The National Solar Mission aims to reach 100 GW of solar power generation by 2022 and has spurred intense activity in solar development across India which has captured the imagination of the region.

At the Economic and Social Commission for Asia and the Pacific, the development arm of the United Nations in the region, we are clear solar energy can boost renewables’ share in our power mix, increase energy efficiency and bring electricity to remote parts of the region. Our research is focused on overcoming the challenges of achieving these three elements of SDG7. Upon request, we support countries maximize the potential to adopt sustainable energy through technical support and capacity building, including through the development of energy transition roadmaps. Work is also underway to develop a develop a regional masterplan on sustainable energy connectivity, vital to make the most of solar power by supporting the growth of cross border power systems.

A core purpose of sustainable development is to ensure we leave future generations a world which affords them the same opportunities we have enjoyed. This is within our grasp if we work across borders to promote solar energy throughout Asia and the Pacific. India has a major role to play. Its experience gives us a historical opportunity to shape best practices in solar energy for our region and reduce carbon emissions. This is experience we cannot afford to waste.

UN ESCAP

Continue Reading

Energy

Phasing Out Coal and Other Transitions: Lessons From Europe

Dr. Arshad M. Khan

Published

on

Climate change reports are seldom sanguine.  Carbon dioxide, the principal culprit, is at record levels, about twice the preindustrial value and a third higher than even 1950.  Without abatement it could rise to  a thousand parts per million in a self-reinforcing loop spiraling into an irredeemable ecological disaster.  The UN IPCC report warns of a 12-year window for action.

Contrasting President Trump’s boast of US energy independence based on coal and other fossil fuels in his SOTU address on Tuesday, two Democrats, Senator Ed Markey and Rep. Alexandria Ocasio Cortez, have introduced a 10-page Green New Deal resolution to achieve carbon neutrality within ten years.  While this target may not be technically feasible, it is an admirable start to the discussion.  At the same time, the Germans are attacking the problem forcefully as demonstrated by their new coal commission report issued last week.

In November 2016, the German Federal Government adopted its Climate Action Plan 2050.  It outlined CO2 reduction targets in energy, industry, buildings, transport and agriculture.  Energy is the most polluting; its emissions total the sum of all the others except industry and energiewende (energy change) was a key aspect of the plan.

So even as our atavistic president is promoting coal, Germany, the EU economic powerhouse, announced it is planning to phase out all coal-fired power stations by 2038.  As outlined in the November 2016 plan, a commission comprising delegates from industry, trade unions, civil society including environmental NGOs and policy makers was appointed in 2018 to examine the issue and prescribe an equitable solution.  After eight months of negotiations and discussions, concluding with a final 21-hour marathon session, it has produced a dense 336-page document.  Only one member out of 28 cast an opposing vote, and Greenpeace added a dissenting option as it wants the process to begin immediately.

Such an objective was a special challenge because of Germany’s long industrial history coupled with coal mining.   The plan shuts down the last coal-burning power station by 2038 as the final step in the pathway outlined — an ambitious alternative is to exit by 2035 if conditions permit.  Total capacity of coal-using stations in Germany is about 45 gigawatts, and the report sets out a four-year initial goal of 12.5 gigawatts to be switched-off i.e. about two dozen of the larger 500+ megawatt units by 2022.  Progressively, eight years later (by 2030) another 24 gigawatts will have been phased out leaving just 9 gigawatts to be eliminated by 2035 if possible but definitely by 2038 at the latest.

It is a demanding plan for coal has been deeply embedded with German industry.  To ease the pain for tens of thousands of workers and their families, the plan allocates federal funding to deal with its broad ramifications i.e. job loss and displacement.  An adjustment fund will be used for those aged 58 and over to compensate pension deficits.  Funds are also directed towards retraining for younger workers and for education programs designed to broaden skills.

It includes 40 billion euros to develop alternative industry in coal mining states plus money not directly project-related.  In addition further investments in infrastructure and a special funding program for transport adding up to 1.5 billion euros per year are allocated in the federal budget until 2021.

The change-over will raise electricity prices, so a 2 billion euro per year compensation program for users, both private individuals and industrial, will continue until 2030.  This is designed to relieve the burden on families, and to maintain industrial competitiveness.

Germany is not alone.  The EU has issued an analysis of accelerated coal phase-out by 2030.  The Netherlands has its own energiesprong (energy leap) focused on energy transition and energy neutral buildings, meaning that the buildings generate enough energy through solar panels or other means to pay for the energy deficit from their construction and use.   It can now clad entire apartment blocks in insulation and solar panels, and is reputed to be so efficient that some buildings are producing more renewable energy than consumed. This expertise is also being utilized in the UK.

Given the forests, the Norwegians have tried something different.  They have built the world’s tallest wooden skyscraper, the Mjøs Tower, 85 meters high in Brumunddal.  Its wood sourced from forests within a 50 km radius uses one-sixth the energy of steel and of course much less, if at all, emission of greenhouse gases.

By the end of Germany’s enormous sector-wide endeavor, it expects to reduce CO2 emissions to roughly half through 2030 and 80-95 percent by 2050.  The comprehensive and complete nature of the program

could serve as a blueprint here in the US.  Thus the obvious question:  If Germany with a far larger proportion of its workforce associated with coal can do it, why can’t the US?

Continue Reading

Energy

The mysterious case of disappearing electricity demand

Published

on

Authors: Stéphanie Bouckaert and Timothy Goodson*

Electricity is at the heart of modern life, and so it’s easy to assume that our reliance on electricity will increase or even accelerate. However, in many advanced economies the data reveals a surprisingly different story.

Electricity demand has increased by around 70% since 2000, and in 2017, global electricity demand increased by a further 3%. This increase was more than any other major fuel, pushing total demand to 22 200 terawatt-hours (TWh). Electricity now accounts for 19% of total final consumption, compared to just over 15% in 2000.

Yet while global demand growth has been strong, there are major disparities across regions. In particular, in recent years electricity demand in advanced economies has begun to flatten or in some cases decline – in fact electricity demand fell in 18 out of 30 IEA member countries over the period 2010-2017. Several factors can account for this slowing of growth, but the key reason is energy efficiency.

There have been a range of new sources of electricity demand growth in advanced economies, including digitalization and the electrification of heat and mobility. However savings from energy efficiency have outpaced this growth. Energy efficiency measures adopted since 2000 saved almost 1 800 TWh in 2017, or around 20% of overall current electricity use.

Over 40% of the slowdown in electricity demand was attributable to energy efficiency in industry, largely a result of strict, broadly applied, minimum energy performance standards for electric motors. In residential buildings, total energy use by certain classes of appliances has already peaked. For example, energy use for refrigerators (98% of which are covered by performance standards) is well below the high point reached in 2009, and energy use for lighting has also declined. In the absence of energy efficiency improvements, electricity demand in advanced economies would have grown at 1.6% per year since 2010, instead of 0.3%.

Changes in economic structure in advanced economies have also contributed to lower demand growth. In 2000, around 53% of electricity demand in the industrial sector came from heavy industry, but by 2017 this figure had fallen to less than 45%.  Advanced economies now account for 30% of global steel production, for example, down from 60% in 2000, and for 25% of aluminium production, also down from around 60% in 2000.

Finally, electricity demand for heat and mobility increased by only 350 TWh between 2000 and 2017. Today, electric cars represent only 1.2% of all passenger vehicle sales in advanced economies and account for less than 0.5% of the passenger vehicle stock. Since 2000, only around 7% of households in advanced economies have switched from fossil fuels (mainly gas) to electricity for space and water heating purposes, and use of electricity for meeting heat demand in the industrial sector remains marginal. In many regions, the price of electricity relative to fossil fuels limits its competitiveness for heating end-uses.

When we look to the future, the pace of electrification is set to pick-up somewhat in advanced economies. Nonetheless, electricity demand growth is projected to remain sluggish in the IEA’s New Policies Scenario (NPS), as improvements in energy efficiency continue to act as a brake on increasing demand for many end-uses. In addition, fewer purchases of household appliances (most households in advanced economies today own at least one of each major household appliance such as refrigerators, washing machines and televisions), and a shift from industry to the less electricity-intensive services sector, all contribute to lower electricity demand growth.

On average, electricity demand in advanced economies is projected to grow at just 0.7% per year to 2040 in the NPS, with the increase largely due to digitalization and policies that incentivise the use of electric vehicles and electric heating. Without those policies, electricity demand would continue to flatten or even decline in many advanced economies.

There are other factors at play. For example, population growth in many advanced economies is barely exceeded by electricity demand growth, meaning that further growth in GDP per capita does not lead to an increase in electricity demand per capita (as an exception, the industry sector in Korea accounts for a large share of electricity demand, and so it is one of the few advanced economies that sees industry contribute to overall electricity demand growth on a per capita basis).

Ultimately, despite moderate growth in electricity demand, fuel-switching to electricity and energy efficiency improvements in the use of other fuels mean the share of electricity in final consumption is projected to increase to 27% in advanced economies by 2040, up from 22% today.

*Timothy Goodson, WEO Energy Analyst

IEA

Continue Reading

Latest

Trending

Copyright © 2019 Modern Diplomacy