Connect with us

Science & Technology

Electric Cars and Tesla Motors

Published

on

Tesla Motors is an American company founded in 2003. It sells, designs and manufactures electric cars and electric vehicle powertrain components. Based on an opinion of Encyclopedia Britannica the name comes from one of the most interesting and fascinating people in history of mankind – Nikola Tesla. In his life he registered more than 300 patents and it is behind today’s unimaginable alternating current on which most of devices are working today and light up the earth globe.

The main markets of EV (Electronic vehicle) are European Union, United States, China and Japan but in foreseeable future they have all the necessary resources to expand to other markets. The main markets correspond to the fact that around 10% of the global population account for 80% of total motorized passenger-kilometers with much of the world’s population hardly traveling at all. EV technology can help reducing environment burden of transport sector, which is responsible for one quarter of total global energy-related CO2 (carbon dioxide) emissions. Road vehicles are contributing the most to transport CO2 emissions and represent 75% of those emissions. Greater demands in future for transport and mobility will cause even bigger emissions. Taking the advice of the Intergovernmental Panel on Climate Change we should reduce CO2 emissions by half, by the year of 2050. Only with the reduction we will avoid some of the worst impacts of Climate change. Reduction in transport sector can therefore play an important role.

History of electric car goes back to 1880s. This decade was marked by electric cars interest because of energy crisis, but they did not become alternative to classic cars until 2000 with the use of Lion battery and higher oil prices. During the history electric power remained commonplace for trains and smaller vehicles of different types. Today they are more expensive in comparison with classic cars, but that can be changed by mass production. To get the basic idea, first EV of the company Tesla’s Roadster basic price is US$109,000. With American company Tesla and other companies that introduced EVs to wider public in 21st century a breakthrough happened. Advantage of EVs over conventional combustion vehicles lies in lower energy consumption, cheaper fuel (energy), no direct emissions, low noise level, no need for oil, cheaper motors production costs and its torque. They can get power from several energy sources that are not yet in use in road transport – renewable energies, such as hydro power, wind and photovoltaic.

Currently EVs represent only a small fraction of car sales. In 2015 (in first two months) 24.455 of EV cars were sold worldwide. On a second place, with 2.250 sold vehicles, was Tesla’s Model S. Previous year there were 320.713 EV sold and from those 17.300 were Tesla’s Model S. In 2014 Tesla was on the third place with number of cars sold. First two were taken by Nisan Leaf and Chevrolet Volt. EVs are sold in greater numbers in United States, Japan, China, Netherlands, France, Norway, Germany, UK, Canada and Sweden.

The company has so far sold more than 50.000 of its first two models. The first was Tesla Roadster in year 2008, after which came Model S and this year a new model will be introduced, named Model X. They have similar range, varying from 245 to 265 miles per charge. Which is improvement from EV1 GM (General Motors) made from 1996 to 1999, which demise can be seen in documentary movie “Who killed electric car?”, that had range from 60 to 90 miles.The producers are downsizing problems of electric cars such as range, performance, recharging time and styling.

There are 396 supercharger stations with 2167 superchargers of Tesla’s in North America, Europe and Asia-Pacific. On those stations you can charge EV in a half of an hour and reach a range of up to 270 km for free. Tesla Supercharger network is the world’s largest and fastest-growing fast-charging network. In 2014, the number of Superchargers increased fivefold. There is also possibility of swapping the battery of an EV, which takes less time than it takes to fill a gas tank.

The general perception is, that EVs are energy efficient, make little noise and locally emission free, but what we need to take into account is electricity split used for charging, types of materials that are used for production of vehicle, since resource extraction and processing has an impact on the environment. There are always two sides of the story and according to Ecologic Institute and its report from 2011, EVs technology is far from being proven, because of battery technology and its energy capacity in relation to vehicle range, charging speed, durability, availability and environment impacts of materials and well-to-wheel impacts on emissions. We need to look also into Interaction with the electricity generation and costs and last but not least business case of large scale introduction. The future uptake of EVs will tend to be heavily supported by government and industry programs and with cooperation with private sector and public-private partnerships. It looks like a long way, contaminated with carbon dioxide, is yet to be walked.

Teja Palko is a Slovenian writer. She finished studies on Master’s Degree programme in Defense Science at the Faculty of Social Science at University in Ljubljana.

Continue Reading
Comments

Science & Technology

Is your security compromised due to “Spy software” know how

Published

on

Spy software is often referred to as spyware is a set of programs that gives access to user/ administrators to track or monitor anyone’s smart devices (such as desktop, laptop, or smart phone) from anywhere across the globe.

Spyware is a threat, not only to businesses but individual users as well, since it can steal sensitive information and harm anyone’s network. It is controversial due to its frequent violation to end user’s privacy. It can attack user’s device, steal sensitive data (such as bank account or credit card information, or personal identity) or web data and share it with data firms, advertisers, or external users.

There are numerous online spyware designed for almost no cost, whose ultimate goal is to track and sell users data. Some spy software can install additional software and change the settings on user’s device, which could be difficult to identify.

Below are four main types of spyware, each has its unique features to track and record users activity:

Tracking cookies: These are the most common type of trackers, these monitor the user’s internet usage activities, such as searches, downloads, and history, for advertising and selling purposes.

System monitors: These spy software records everything on your device from emails, keystrokes, visited websites, chat-room dialogues, and much more.

Adware: This spyware is used for marketing purpose, it tracks users downloads and browser history, and suggests or displays the same or related products, this can often lead to slow device.

Trojan: This spyware is the most malicious software. It can be used to track sensitive information such as bank information or identification numbers.

Spyware can attack any operating system such as windows, android, or Apple. Windows operating systems are more prone to attack, but in past few years Apple’s operating systems are also becoming vulnerable to attacks.

According to a recent investigation by the Guardian and 16 other media organizations, found that there is a widespread and continuous abuse of NSO’s hacking spyware Pegasus, on Government officials, human rights activists, lawyers and journalists worldwide which was only intended to use against terrorists and criminals.

The research, conducted by the Pegasus technical partner Amnesty’s Security Lab, found traces of the Pegasus activity on 37 out of the 67 examined phones. Out of 37 phones, 34 were iPhones, and 23 showed signs of a Pegasus infection, while remaining 11 showed signs of attempted infection. However, only three out of 15 Android phones were infected by Pegasus software.

Attacks like the Pegasus might have a short shelf life, and are used to target specific individuals. But evidences from past have proved that attackers target large group of people and are often successful.

Below are the most common ways devices can become infected with spyware:

  • Downloading software or apps from unreliable sources or unofficial app publishers
  • Accepting cookies or pop-up without reading
  • Downloading or watching online pirated media content
  • Opening attachments from unfamiliar senders

Spyware can be extremely unsafe if you have been infected. Its damage can range from short term device issue (such as slow system, system crashing, or overheating device) to long-term financial threat.

Here’s what you can do protect your devices from spyware:

Reliable antivirus software: Firstly look for security solutions available on internet (some are available for free) and enable the antivirus software. If your system or device is already infected with virus, check out for security providers offering spyware identification and removal.

-For instance, you can install a toolkit (the Mobile Verification Tool or the MVT) provided by Amnesty International. This toolkit will alert you with presence of the Pegasus Spyware on your device.

-The toolkit scans the backup file of your device for any evidence of infection. It works on both Apple and Android operating systems, but is more accurate for Apple operating system.

-You can also download and run Norton Power Eraser a free virus removal tool.

Update your system regularly: Set up an update which runs automatically. Such automatic updates can not only block hackers from viewing your web or device activity, but can also eliminate software errors.

Be vigilant of cookies compliance: Cookies that records/ tracks users browsing habits and personally identifiable information (PII) are commonly known as adware spyware. Accept cookies only from reliable sites or download a cookie blocker.

Strong authentication passwords: Try to enable Multi-factor Authentication (MFA) wherever possible, or if not possible create different password for all accounts. Change your password for each account after a certain period of time.

-Password breaches can still occur with these precautions. In such case change your password immediately.

Be cautious of free software: Read the terms and conditions on software licenses, before accepting. Free software might be unlimited but, your data could be recorded with those free software’s.

Do not open any files from unknown or suspicious account: Do not open any email attachments or text on mobile from a suspicious, unknown, or untrustworthy source/number.

Conclusion:

Spyware could be extremely dangerous, however it can be prevented and removed by being precautious and using a trustworthy antivirus tool. Next gen technologies can also help in checking and removing malicious content. For instance, Artificial intelligence could aid the organizations identify malicious software, and frequently update its algorithms of patterns similar to predict future malware attacks.

Continue Reading

Science & Technology

Implementation of virtual reality and the effects in cognitive warfare

Published

on

Photo: Lux Interaction/Unsplash

With the increasing use of new technologies in warfare situations, virtual reality presents an opportunity for the domain of cognitive warfare. Nowadays, cognitive skills are treated equally as their physical counterparts, seeking to standardize new innovative techniques. Virtual reality (VR) can be used as a tool that can increase the cognitive capabilities of soldiers. As it is understandable in today’s terms, VR impacts the brain directly. That means that our visual organs (eyes) see one object or one surrounding area, but brain cells perceive and react to that differently. VR has been used extensively in new teaching methods because of the increased probability of improving the memory and learning capabilities of students.

Besides its theoretical teaching approach and improvement of learning, VR can be used systematically towards more practical skills. In medicine for example students can have a full medicine lesson on a virtual human being seeing the body projected in 3D, revolutionizing the whole field of medicine. If that can be used in the medical field, theoretically it will be possible to be used in combat situations, projecting a specific battlefield in VR, increasing the chances of successful engagement, and reducing the chance of casualties. Knowing your terrain is equally important as knowing your adversary.

The use of VR will also allow us to experience new domains relating to the physical health of a person. It is argued that VR might provide us with the ability to effectively control pain management. Since VR can stimulate visual senses, then it would be safe to say that this approach can have higher effectiveness in treating chronic pain, depression, or even PTSD. The idea behind this usage is that the brain itself is already powerful enough, yet sometimes when pain overwhelms us we tend to lose effectiveness on some of our senses, such as the visual sense. An agonizing pain can blurry our vision, something that we cannot control; unless of course theoretically, we use VR. The process can consist of different sounds and visual aids that can trick the mind into thinking that it is somewhere that might be the polar opposite of where it is. Technically speaking, the mind would be able to do that simply because it works as a powerful computer, where our pain receptors can override and actually make us think that we are not in such terrible pain.

Although the benefits of VR could be useful for our health we would still need to deal with problems that concern our health when we use a VR set.  It is possible that the brain can get overloaded with new information and the new virtual environments. VR poses some problems to some people, regarding the loss of the real environment and creating feelings of nausea or extreme headaches. As a result, new techniques from cognitive psychologists have emerged to provide a solution to the problem. New technologies have appeared that can desaturate colors towards the edge of the headset in order to limit the probability of visual confusion. Besides that, research shows that even the implementation of a virtual nose when someone wears a VR headset can prevent motion sickness, something that our brain does already in reality.

However, when it comes to combatants and the implementation of VR in soldiers, one must think of maybe more effective and fast solutions to eliminate the problems that concern the confusion of the brain. Usage of specific pharmaceuticals might be the key. One example could be Modafinil which has been prescribed in the U.S. since 1998 to treat sleep-related conditions. Researchers believe it can produce the same effects as caffeine. With that being said, the University of Oxford analyzed 24 studies, where participants were asked to complete complex assignments after taking Modafinil and found out that those who took the drug were more accurate, which suggests that it may affect higher cognitive functions.

Although some of its long-term effects are yet to be studied, Modafinil is by far the safest drug that can be used in cognitive situations. Theoretically speaking, if a long exposure to VR can cause headaches and an inability to concentrate, then an appropriate dose of Modafinil can counter the effects of VR. It can be more suitable and useful to use on soldiers, whose cognitive skills are better than civilians, to test the full effect of a mix of virtual technology and pharmaceuticals. VR can be a significant military component and a simulation training program. It can provide new cognitive experiences based on foreign and unknown terrains that might be difficult to be approached in real life. New opportunities arise every day with the technologies, and if anyone wanted to take a significant advantage over adversaries in the cognitive warfare field, then VR would provide a useful tool for military decision-making.

Continue Reading

Science & Technology

Vaccine Equity and Beyond: Intellectual Property Rights Face a Crucial Test

Published

on

research coronavirus

The debate over intellectual property rights (IPRs), particularly patents, and access to medicine is not new. IPRs are considered to drive innovation by protecting the results of investment-intensive R&D, yet arguably also foster inequitable access to affordable medicines.

In a global public health emergency such as the COVID-19 pandemic, where countries face acute shortages of life-saving vaccines, should public health be prioritized over economic gain and the international trade rules designed to protect IPRs?

The Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPs), to which all 164 member states of the World Trade Organization (WTO) are a party, establish minimum standards for protecting different forms of IPRs. 

In October 2020, India and South Africa – countries with strong generic drug manufacturing infrastructure – invoked WTO rules to seek a temporary waiver of IPRs (patents, copyrights, trade secrets, and industrial designs) on equipment, drugs, and vaccines related to the “prevention, containment or treatment of COVID-19.” A waiver would mean that countries could locally produce equipment and vaccines without permission from holders of IPRs. This step would serve to eliminate the monopolistic nature of IPRs that give exclusive rights to the holder of IPRs and enable them to impose procedural licensing constraints.

Brazil, Japan, the European Union (EU), and the United States (US) initially rejected the waiver proposal. That stance changed with the rise of new COVID-19 mutations and the associated increase in deaths, with several countries facing a public health crisis due to vaccine supply shortages. The position of many states began shifting in favor of the India-South Africa proposal, which now has the backing of 62 WTO members, with the US declaring support for the intent of the temporary waiver to secure “better access, more manufacturing capability, more shots in arms.” Several international bodies, the World Health Organization (WHO), and the UN Committee on Economic, Social and Cultural Rights have voiced support.

Some countries disagree about the specific IPRs to be waived or the mechanisms by which IPRs should be made available. The EU submitted a proposal to use TRIPS flexibilities such as compulsory licensing, while others advocate for voluntary licensing. The TRIPS Council is conducting meetings to prepare an amended proposal to the General Council (the WTO’s highest-level decision-making body in Geneva) by the end of July 2021.

The crisis in India illustrates the urgency of the situation. India produces and supplies Covishield, licensed by AstraZeneca; and Covaxin, which is yet to be included on the WHO’s Emergency Use Listing (EUL). Due to the devastating public health crisis, India halted its export of vaccines and caused a disruption in the global vaccine supply, even to the COVID-19 Vaccines Global Access (COVAX) program. In the meantime, the world’s poorest nations lack sufficient, critical vaccine supplies.

International law recognizes some flexibility in public health emergencies. An example would be the Doha Declaration on TRIPS and Public Health in 2001, which, while maintaining the commitments, stresses the need for TRIPS to be part of the wider national and international action to address public health problems. Consistent with that, the body of international human rights law, including the International Covenant on Economic, Social and Cultural Rights (ICESCR), protects the right to the highest attainable standard of health.

But as we race against time, the current IPR framework may not allow for the swift response required. It is the rigorous requirements before a vaccine is considered safe to use under Emergency Use Authorizations and procedural delays which illuminate why IPR waivers on already approved vaccines are needed. Capitalizing on the EUL’s approved vaccines that have proven efficacy to date and easing IPR restrictions will aid in the timely supply and access of vaccines.

A TRIPS waiver may not solve the global vaccine shortage. In fact, some argue that the shortages are not an inherent flaw in the IP regime, considering other supply chain disruptions that persist, such as the ones disrupting microchips, pipette tips, and furniture. However, given that patent licensing gives a company a monopoly on vaccine commercialization, other companies with manufacturing capacity cannot produce the vaccine to scale up production and meet supply demands.

Neither does a temporary waiver mean that pharmaceutical companies cannot monetize their work. States should work with pharmaceuticals in setting up compensation and insurance schemes to ensure adequate remuneration.

At the College of Law at Hamad Bin Khalifa University, our aim is to address today’s legal challenges with a future-oriented view. We see COVID-19 as a case study in how we respond to imminent and existential threats. As global warming alters the balance of our ecosystem, threats will cascade in a way that is hard to predict. When unpredictable health emergencies emerge, it will be human ingenuity that helps us overcome them. Even the global IP regime, as a legal system that regulates ideas, is being tested, and should be agile enough to respond in time, like the scientists who sprang into action and worked tirelessly to develop the vaccines that will soon bring back a semblance of normal life as we know it.

Continue Reading

Publications

Latest

Trending